Bovine Development

From Embryology
Revision as of 17:27, 10 February 2014 by Z8600021 (talk | contribs)
Embryology - 28 Mar 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

Cow and calf

Bovine (taxon- Bos taurus) development is studied extensively due to the commercial applications of cattle both for milk and meat production.

Cattle Gestation Periods (Bovine Development)  
Breed Average Days
(±7–10 days)
Angus 281
Ayrshire 279
Brahman 292
Brown Swiss 290
Charolais 289
Guernsey 283
Hereford 285
Holstein 279
Jersey 279
Limousin 289
Shorthorn 282
Simmental 289


Bovine Links: Bovine Development | Category:Bovine
Historic Embryology  
1922 Pharyngeal Arches | 1946 Oocyte to Blastocyst

Animal Development: axolotl | bat | cat | chicken | cow | dog | dolphin | echidna | fly | frog | goat | grasshopper | guinea pig | hamster | horse | kangaroo | koala | lizard | medaka | mouse | opossum | pig | platypus | rabbit | rat | salamander | sea squirt | sea urchin | sheep | worm | zebrafish | life cycles | development timetable | development models | K12
Historic Embryology  
1897 Pig | 1900 Chicken | 1901 Lungfish | 1904 Sand Lizard | 1905 Rabbit | 1906 Deer | 1907 Tarsiers | 1908 Human | 1909 Northern Lapwing | 1909 South American and African Lungfish | 1910 Salamander | 1951 Frog | Embryology History | Historic Disclaimer

Some Recent Findings

Bovine stem cell marker expression[1]
  • Expression of pluripotency master regulators during two key developmental transitions: EGA and early lineage specification in the bovine embryo[1] "Pluripotency genes are implicated in mouse embryonic genome activation (EGA) and pluripotent lineage specification. ...Our findings affirm: firstly, the core triad of pluripotency genes is probably not implicated in bovine EGA since their proteins were not detected during pre-EGA phase, despite the transcripts for OCT4 and SOX2 were present. Secondly, an earlier ICM specification of transcripts and proteins of SOX2 and NANOG makes them pertinent candidates of bovine pluripotent lineage specification than OCT4."
  • Vascular changes in the corpus luteum during early pregnancy in the cow[2] "The present study determined vascular changes in the bovine corpus luteum (CL) at Day 16 (early maternal recognition period) and Day 40 in early pregnancy and compared them to the CL from Day 12 and Day 16 of the estrous cycle. ...The results suggest that there is no difference in vascular structure between non-pregnant and pregnant luteal tissue during the early maternal recognition period (Day 16). "
  • Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo[3] "Bovine embryos can be generated by in vitro fertilization or somatic nuclear transfer; however, these differ from their in vivo counterparts in many aspects and exhibit a higher proportion of developmental abnormalities. Here, we determined for the first time the transcriptomes of bovine metaphase II oocytes and all stages of preimplantation embryos developing in vivo up to the blastocyst using the Affymetrix GeneChip Bovine Genome Array which examines approximately 23,000 transcripts."

Taxon

Bos taurus

Genbank common name: cow, bovine, domestic cattle

Taxonomy Id: 9913 Rank: species

Genetic code: Translation table 1 (Standard)

Mitochondrial genetic code: Translation table 2 (Vertebrate Mitochondrial)

Lineage( abbreviated ): Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Laurasiatheria; Cetartiodactyla; Ruminantia; Pecora; Bovidae; Bovinae; Bos; Bos taurus

Bovine Development

The table below shows the general timing of early development stages in the bovine embryo, as well as comparing this to other domestic species.

Implantation in the uterus occurs between 30-35 days.

Species 1 cell

(hours)

8 cell

(days)

Blastocyst

(days)

Enter Uterus

(days)

Length of Gestation

(days)

Cattle 24 3 8 3.5 281
Horse 24 3 6 5 337
Sheep 24 2.5 7 3 148
Swine 14-16 2 6 2 114

(Data: Oklahoma State University Learning Reproduction in Farm Animals)

Cattle Gestation Periods (Bovine Development)  
Breed Average Days
(±7–10 days)
Angus 281
Ayrshire 279
Brahman 292
Brown Swiss 290
Charolais 289
Guernsey 283
Hereford 285
Holstein 279
Jersey 279
Limousin 289
Shorthorn 282
Simmental 289

General Overview

A historic general descriptive overview.[4]

  • First month (28 days) - The embryonic period, the embryo is 9 to 10 mm long and the first signs of extremities appear.
  • Second month (30 to 60 days) - The extremities develop. The pharyngeal cleft closes in the beginning of this month. The sternum still has a longitudinal fissure in the middle, closing toward the end of the eighth week. At the end of the second month at the end of each extremity are a little conical elevation, which is colorless and transparent. This is the first indication of the hoof. The length of the fetus is 48 mm In the ninth week its length is 8 cm.
  • Third month (60 to 90 days) - Toward the end of this month the four stomachs may be recognized. The fetus measures 14 cm. in length. The scrotum is present.
  • Fourth month (90 to 120 days) - In the beginning of the fourth month the hoofs become quite, distinct ; they are firm, non-transparent, and have a yellow color. The fetus is about 24 cm. long and weighs up to 2 kg. (Frauck).
  • Fifth month (120 to 150 days) - In the beginning of the month the first tentaculse (tactile hairs) appear on the lips, chin, upper eyelid, and orbital arch. The teats are plainly visible. The testicles descend into the scrotum. The fetus, is about 35 cm. long and weighs 2.5 to 3 kg.
  • Sixth month (150 to 180 days) - The eyelashes are more developed. The foetus is about 46 cm. long. The whole body is still naked excepting the lips and eyelids.
  • Seventh month (180 to 210 days) - At the end of this month a few long hairs appear at the end of the tail; also hairs about the coronet and on the spots where the horns appear. The foetus is about 60 cm. long.
  • Eighth month (210 to 240 days) - The back begins to be covered with hair, also along the edges of the ears. The length of the fetus toward the 32d week is 65 cm, and toward the end of this month 75 cm. (Franck).
  • Ninth month - In the beginning the whole body is covered with hair and increases greatly in size. The fetus measures from 80 to 100 cm.
  • Tenth month - beginning this month the fetus becomes mature.


Bovine Estrous Cycle

Bovine estrous cycle hormone graph.jpg

Specific hormone concentrations are not shown in the above graph, only the relative hormone levels at different times during the cycle.


Links: Estrous Cycle

Oocyte Development

Bovine ovarian follicle BMP15 and GDF9 expression.jpg

Bovine ovarian follicle BMP15 and GDF9 expression[5]

Morula and Blastocyst

Bovine morula and blastocyst.[6]

Bovine morula 01.jpg

Bovine Morula (day 4)[6]

Bovine blastocyst 01.jpg Bovine blastocyst 02.jpg

Bovine Blastocyst (day 7)[6]


Bovine stem cell marker expression 01.jpg

Bovine stem cell marker expression[1]

Links: Image - Morula and Blastocyst | Morula A | Blastocyst F | Blastocyst G | Bovine Development | Morula | Blastocyst

Placenta

DeBruin1910 fig10.jpg Fetal Circulation of a Calf

Placentation is epitheliochorial, where the maternal epithelium of the uterus comes in contact with the chorion, considered as primitive. The arrows indicate the direction in which the blood flows.

A, Heart; B, umbilical opening; C, portion of the chorion. 1, Anterior aorta; 2, posterior aorta; 3 anterior vena cava; 4, posterior vena cava; 5, duct of Botalli; part of Botalli's duct posterior to the heart (sketched somewhat too long, but was necessary in order to demonstrate it) ; 6, umbilical arteries; 7, umbilical vein; 7', some of its branches; 8, portal vein; 9, ductus venosus; 10, portal veins: 11, pulmonary artery; 11', some of its branches; 12, pulmonary veins; 13, tuberculum Loweri; 14, chorion papillae.

Figure: DeBruin Bovine Obstetrics (1910)


Links: Placenta Development

Genital Development

The male bovine (bull) first development of the testis at the genital ridge is triggered by SRY expression following the timeline shown below.[7]

  • Day 32 - (CRL 12) Genital ridges first appeared
  • Day 37 - (CRL 18) SRY expression begins
  • Day 39 - (CRL 20) SRY expression peaks
  • Day 42 - (CRL 27) Testis cords distinguishable

References

  1. 1.0 1.1 1.2 <pubmed>22479535</pubmed>| PMC3315523 | PLoS One.
  2. <pubmed>20103987</pubmed>
  3. <pubmed>19064908</pubmed>| PNAS
  4. Bruin, M. G. de. Bovine obstetrics (1910) translated by W. E. A. Wyman
  5. <pubmed>21401961</pubmed>| Reprod Biol Endocrinol.
  6. 6.0 6.1 6.2 <pubmed>21811561</pubmed>| PLoS One.
  7. <pubmed>19844082</pubmed>

Reviews

Articles

Search Pubmed

Search Pubmed: bovine development

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.


Animal Development: axolotl | bat | cat | chicken | cow | dog | dolphin | echidna | fly | frog | goat | grasshopper | guinea pig | hamster | horse | kangaroo | koala | lizard | medaka | mouse | opossum | pig | platypus | rabbit | rat | salamander | sea squirt | sea urchin | sheep | worm | zebrafish | life cycles | development timetable | development models | K12
Historic Embryology  
1897 Pig | 1900 Chicken | 1901 Lungfish | 1904 Sand Lizard | 1905 Rabbit | 1906 Deer | 1907 Tarsiers | 1908 Human | 1909 Northern Lapwing | 1909 South American and African Lungfish | 1910 Salamander | 1951 Frog | Embryology History | Historic Disclaimer


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link



Cite this page: Hill, M.A. (2024, March 28) Embryology Bovine Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Bovine_Development

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G