Book - Anatomical and physiological studies on the growth of the inner ear of the albino rat (1923): Difference between revisions

From Embryology
Line 379: Line 379:
5 (zona arcuata) and 10, which is the radial breadth of the zona  
5 (zona arcuata) and 10, which is the radial breadth of the zona  
pectinata of the membrana basilaris.  
pectinata of the membrana basilaris.  
==II. Correlation Between the Inception of Hearing and the Growth of the Cochlea==
The present study aims merely to compare in the rat the
size of each element of the cochlea just before and just after
the appearance of hearing and to ascertain the changes in the
cochlea which take place during this phase. The rats which
have sense of hearing show the so-called ' Ohrmuschelreflex 'of Preyer and other responses to auditory tests. Both the guineapig and rat react most evidently to sounds. The former animal
responds usually five to six hours after birth. In the rat, however,
the development of the function is, as already stated, relatively
retarded and usually first appears at about ten days of age.
To test the presence of hearing there are several methods,
as for example, Preyer V Ohrmuschelreflex' and the reflex
closure of the eyelid, and these I used in making my observations.
As the source of the sound I selected the hand clap, a whistle
(Triller-pfeife, about c 4 ) and a low sound made by drawing in
the breadth with nearly closed lips (about c 1 ).
Since it is my purpose merely to determine the first appearance of a response to sound, it is not nescessary to carry out such
refined examinations as did Hunter ('14, '15, '18) Watson
('07), and others on white rats, and Marx ('09) on the guineapig, nor was it necessary to use the tuning-fork which by the
way is not so good for tests on animals as for those on man.
Since sometimes we may have a defect of hearing in animals,
as shown by many investigators, it was deemed necessary to
use several sources of sound and to take care not to produce
ah* currents striking the test animal or to touch it in any way.
For this purpose a large sheet of glass was placed between the
source of sound and the rats to be tested. While the rat was
resting I suddenly produced the sound and noted whether the
rat responded. When the animals already had their eyes open
the test was made from behind to avoid visual reflexes.
Observations
Rats at birth show no response to auditory stimuli. Most
of them respond at twelve days of age very clearly, sometimes
at ten to eleven days Under certain circumstances, the time
of the reflex can be rather accurately noted. For example,
while in the morning at ten days no reflex was noted it was
present in the evening of the same day. Fortunately, I obtained
five nine-day-old rats belonging to one litter and in nearly the
same condition of nourishment and developnent. One of these responded to the test very evidently at noon on the ninth day,
but the others did not. The sound which was effective was
fairly intense, but to a faint and low-pitched sound this rat
did not respond. In this case the external auditory canal was
open. In the others there was in some a small open canal,
but more or less closed by a cellular plug. In the latter cases
I removed this obstruction without much difficulty or damage
by washing, yet no reaction could be obtained to the stimuli.
As it was to be expected, that also in the latter the reflexes would
very shortly appear, all the cochleas of these young rats, both
the not-hearing and hearing, were fixed by the method previously described and later examined.
In chapter 1, in which I followed the growth changes in the
constituents of the membranous cochlea and in its ganglion
cells from birth to maturity, including ' not hearing ' and ' hearing '
rats, very evident differences were observed in rats between
nine and twelve days of age. In view of this, it will be of interest to compare the measurements obtained from the 'not
hearing' and 'hearing' rats nine days old and members of the
same litter. From the differences thus obtained we can conclude
concerning the developmental changes in the cochlea requisite
for the first appearance of hearing, provided there are no obstacles
in the sound-conducting apparatus or deficiencies in the central
organ.
In table 113 are given the values for the size of the several
constituents of the cochlea 'from a rat which did not hear and
one which did, at nine days. The former data are the averages
from four cochleas, while the latter are from two. The table
shows in a striking way that where there is a significant difference. The values obtained from the rat which could hear are
usually larger than those of the rat which could not hear.
Among these measurements we see sometimes very marked
and sometimes only slight differences. Only the radial distance
between the labium vestibulare and the inner edge of the head
of the inner pillar cell in the first two turns and the diameter of
the nuclei of the inner and outer hair cells are in the former smaller
than in the latter. In both instances, however, these smaller
TABLE 113
Comparison of the dimensions of the constituents of the cochlea in a hearing rat (H.)
with those in a rat not hearing (N.) at nine days of age measurements
in micro
BAT
AGE
BODY
WEIGHT
(N.)
(H.)
days
9
9
grams
10
11
(N.)
(H.)
1430
1434
Average
distance between two spiral ligaments
Breadth of membrana tectoria
TURN I
II
III
IV
Average
Th ids ness
(N.)
(H.)
243
242
270
268
304
308
306
314
281
283
27
27
Breadth of membrana basilaris
TURN I
II
III
IV
AVERAGE
ZONA ZONA
ARCUATA PECTINATA
(N.)
(H.)
169
171
189
186
202
214
201
204
191
196
79 112
93 103
Distance between the habenula perforata and the outer corner of the inner
hair cell
TURN I
II
III
IV
AVERAGE
(N.)
(H.)
38
40
38
42
44
58
49
60
42
50
Distance between habenula perforata and the outer corner ol the outer pillar
cell at foot*
TURN I
II
ill
IV
Average
(N.)
(H.)
70
79
76
88
86
103
86
102
79
93
Height of greater epithelial ridge
TURN I
II
III
IV
AVERAGE
(N.)
(H.)
36
42
40
43
41
48
42
50
40
46
Distance between the labium vestibulare and the habenula perforata
TURN I
II
III
IV
Average
(x.)
(H.)
83
85
108
104
137
140
145
150
118
120
GROWTH OF THE INNER EAR OF ALBINO RAT
149
TABLE 113 Continued
Distance between the labium vestibulare and the inner edge of the head of the
inner pillar cell
TURN I
II
III
IV
Average
(N.)
(H.)
94
78
131
108
168
170
179
210
143
142
Height from basal plane to surface of pillar cells
TURN I
II
III
IV
AVERAGE
(N.)
(H.)
32
40
33
42
35
45
36
45
34
43
Height of tunnel of Corti
TURN I
II
III
IV
AVERAGE
(N.)
(H.)
20
18
14
11
16
Height of papilla spiralis at the third series of outer hair cells
TURN I
II
III
IV
AVERAGE
(N.)
(H.)
28
42
28
43
27
39
28
36
28
40
Height of Hensen's cells
TURN I
II
ill
IV
AVERAGE
(N.)
(H.)
20
42
23
45
23
38
24
30
23
39
Angle of lamina basilaris with plane of membrana basilaris degrees
TURN I
II
HI
IV
AVERAGE
(N.)
(H.)
+7
+4
-8
7
Length of the inner and outer pillar cells
INNER
TURN I
II
III
IV
AVERAGE
(N.)
(H.)
35
36
39
39
41
42
40
45
39
41
OUTER
TURN I
II
III
IV
AVERAGE
WEIGHTED
AVERAGE
(N.)
(H.)
26
45
26
54
29
50
29
40
28
47
30
46
Volume of inner and outer hair cells
INNER: AVERAGE
OUTER: AVERAGE
WEIGHTED AVERAGE
(N.)
(H.)
1798
1815
1277
1279
1407
1428
150
ANATOMICAL AND PHYSIOLOGICAL STUDIES ON
TABLE 113 Concluded
Diameter of nuclei of the inner and outer hair cells
INNER: AVERAGE
OUTER: AVERAGE
WEIGHTED AVERAGE
(N.)
(H.)
8.3
8.2
8.0
7.4
8.1
7.6
DEITERS' CELLS:
VOLUME M '
DIAMETER OF
NUCLEI
LENGTH OF CELL
BODY
PHALANGEAL
PROCESS
(N.)
(H.)
518
1193
7.0
7.2
14
32
22
22
Ganglion spirale: diameters computed
CELLS
NUCLEI
(N.)
(H.)
13.6
13.7
8.5
8.6
values are marks of maturity. These changes in size accord
with the results given in chapter 1 at twelve days of age, though
there are some differences between them in the absolute values.
Figures 7 and 8 illustrate the outlines of the tympanic wall
of the membranous cochlea in nine-day-old rats which could
not and could hear, respectively. These figures have been
drawn from the corresponding sections at the beginning of
the middle turn of the cochlea and are comparable with figures
3 to 6 and 9 to 12. On comparing figures 7 and 8, the more
noticeable differences appear to be the following.
The membrana tectoria is a bit longer in the hearing rat.
The appearance and the position of it with reference to the
surface of the papilla spiralis is also different. In the not-hearing
cochlea it has an infantile look.
The outer end of the main part does not yet reach the second
row of the outer hair cells and connects with the Hensen's
prominence by a thick thread. There are also many fine fibers
to be seen between the basal surface of the membrane and the
papilla. In the hearing rat the fine fibers are absent. The
membrane reaches already the row of the outer hair cells and
there is a strong connection between this part and the terminal
ame (Schlussrahmen) of the lamina reticularis by a thick
read as shown in figure 8 Thus the position of the membrane
above the papilla depends a little bit upon the increase of
the length of the membrane itself, but chiefly upon other factors
such as the inward shifting of the papilla. The membrana
basilaris as a whole shows a small increase o" breadth in the
hearing rat. The zona arcuate, however, increases much in
its breadth, while the zona pectinata rather decreases. This
is due to the development of the pillar cells. The base of the
inner and outer pillar cell spread much on the membrane. At
the same time the length of the cells, especially of the outer,
increases nearly twice as much as in the not-hearing rat.
Thus the foot of the outer pillar cell moves out ward, as Bottcher
('69, 72) stated, while the inner corner of the inner pillar cell
does not move in any way, as the habenula perforata stands at
a fixed point. This results in a change in the form of the arch
of Corti. The hitherto outward inclined arch tends to bend
inward and between both inner and outer cells arises a space,
the tunnel of Corti. The appearance of the tunnel seems to have
some relation to hearing. The tunnel is always present in the
cochleas of hearing rats. Sometimes the tunnel is present in
the lower turns, but not in the upper turns in the not-hearing rats.
We can say, therefore, that it probably appears through all the
turns before the special function of the cochlea begins. In this
way the zona arcuata of the membrana basilaris increases its
breadth.
The next striking change is the rapid increase in the size of
the Deiters' cells, Hensen's cells, and the resultant change of
the form, with an inward shifting, of the papilla spiralis.
The Deiters' cells increase their height very rapidly; the length
of the cell body becomes over twice that in the not-hearing rat,
but the processus phalangeus changes only slightly. Hensen's cells develop also, but not so much as Deiters' cells. The
papilla spiralis thus increases in height. On the other hand,
the greater epithelial ridge vanishes inwards from the inner
supporting cells and appears as a furrow the sulcus spiralis
internus. Through the pressure of these outward-lying cells
the papilla spiralis swings inward as a whole, without really
moving on the membrana basilaris. The lamina reticularis becomes inclined inward instead of outward and subtends a
slight angle with the plane of the membrana basilaris. The
distance from the labium vestibulare to the inner edge of the
head of the inner pillar cell becomes smaller through the inward
shifting of the papilla.
In the hair cells and the cells of the ganglion spirale we see
a smaller difference between the hearing and not-hearing rats.
Only the diameter of the nuclei of the hair cells in the hearing
rat diminishes a little, as it continues to do in the adult cochlea.
All the changes just enumerated begin at the base of the
cochlea and progress to the apex. Therefore we see the high
and outward ascending papilla spiralis in turn I, while in the
upper turns the papilla is not yet so developed, is smaller in all
the constituents, and shows in general the characters of a younger
and less mature cochlea conditions which disappear with age.
This upper and immature part seems not to respond to the test
for hearing. Indeed, my testing result is positive for sounds of
high pitch, but not for low pitch. Therefore we conclude that
the papilla spiralis develops functionally from base to apex and
that when the papilla spiralis has developed in the basal turns,
but not in the upper turns, it responds to sounds of high pitch
alone.
Discussion
If we assume that our tests for hearing are trustworthy, then
the differences between the size of the constituents of the cochlea
in nine-day-old rats which could and could not hear will indicate
what developmental changes in the cochlea of the albino rat are
necessary for the appearance of the hearing reflex. Whether all
the differences found by us are necessary is difficult to determine,
and the problem is open for further study; but as the matter
stands, our results give the closest correlation between structural
changes and the appearance of function which has as yet been
reported.
Kreidl and Yanase ('07) studied the differences between the
not-hearing and hearing rat and summarized their results on
page 509: "Kurz vor Eintritt des Horreflexes ist das Cortische Organ im wesentlichen fertig ausgebildet. " They publish no
measurements nor data. The condition of the development of
the organ of Corti described as 'fertig ausgebildet' is not sufficiently precise.
Further, on the same page they say, "Der auffalligste und,
soweit die Untersuchungen bis jetzt eregben haben, einzige
Unterchied, der zwischen dem anatomischen Bild des Labyrinthes
eines neugeborenen Tieres, das den Reflex eben nochnichtaufweist,
und dem eines solchen, dasdenselben zum ersten Male eben erkennan lasst, ist der, dass beim ersteren noch ein Zusammenhang zwischen Cortischem Organ und Cortischer Membran besteht, beim
letzteren dagegen dieser Zusammenhang bereits gelost oder gelockert ist." Their observation is quite different from mine. In my case
the papilla spiralis shows in the development of its constituent
elements pretty large differences between the not-hearing and
hearing rats. Therefore it seems probable that the changes in the
growth and form of the papilla just before the first appearance of
the special function, take place very quickly. Also we cannot
agree to then* statement concerning the relation of the membrana
tectoria to the papilla spiralis. In our preparations there is
still a connection of the membrane with the terminal frame of the
lamina reticularis through a thick thread in the cochlea of the
rat which could hear (fig. 8) and also in that of the rat which
could not hear (fig. 7).
This is a point on which opinions differ. While one opinion,
represented by Kishi ('07) and others, is to the effect that this
connection remains through life, the other, represented by Kolliker('67) and others, asserts the membrane projects free in the
endolymph. I have never seen this connection in the adult
cochlea, nor have I found such a connection of the membrane
with the hairs of the hair cells, as Shambaugh ('10) described in
the pig. In the young rats, at fifteen days for example, we very
often see upon the terminal frame the broken remainder of this
connecting thread. Whether this break arises through natural
development or is the result of artificial manipulation it is hard
to say. At any rate, Held's assertion ('90), that in an animal
capable of hearing the membrana tectoria is never connected with the papilla spiralis, is not supported by my observation.
That the freeing of the outer zone of the membrane is not absolutely necessary for the mediation of auditory impulses is
demonstrated in the cochlea of birds, as shown by Hasse ('66),
Retzius ('84), Sato ('17), and others. In these forms the membrane remains through life attached to the epithelial ridge.
My results agree with those of Hardesty ('15) on this point,
though he obtained a tectorial membrane which floats free in
the endolymph with its outer zone. Lane ('17) studied the correlation between the structure of the papilla spiralis and the
appearance of hearing in the albino rat, but his description is
brief and does not touch on this relation of the papilla to the
tectorial membrane.
Thus the inception of hearing does not coincide with the
detachment of the tectorial membrane from the papilla spiralis,
but with the development of each constituent of the papilla
spiralis and the membrane tectoria, as has been described. As
these changes occur first at the base and then pass to the apex,
the animal can perceive at first only the sounds of high pitch.
One or two days later development is complete in all the turns,
and then the rat can hear the sounds of lower pitch also. Thus
the process of the development of the cochlea does not support
the ' telephone theory' of audition, but on the contrary agrees with
the conclusion that the papilla in different locations in the turns
of the cochlea responds to sounds of a definite pitch, as Wittmaack ('07), Yoshii ('09), Hoessli ('12), and others have shown
by experimental studies on the mammals.
Concerning the exact age of the first appearance of the function
in the rat, there are several different statements. Lane ('17)
found no response to sound before the twelfth day after birth,
and on the sixteenth day he reports hearing well established.
Kreidl and Yanase ('07) state that hearing begins in the rat at
from twelve to fourteen days. My rats responded usually at
ten to twelve days, but one at nine days. These differences
depend in all probability on the vigor of the young during the
first days of postnatal life, and it seems probable that exceptionally well-nourished young might develop precociously in this
GROWTH OF THE INNER EAR OF ALBINO RAT 155
respec t. The intensity of the stimulus is important in determining
the hearing reflex, as Small ('99) has stated. In my cases the
young rats responded very evidently to intense sounds, while
they reacted weakly or not at all to those which were faint.
Thus only the intense sounds were perceived by the rat of nine
days.
Conclusions
1. The hearing reflex was never obtained in rats less than
nine days of age.
2. At nine days a single rat, one of five in a litter, responded to
a sharp sound like clapping the hands and to a whistle of high
pitch; the other four did not respond. At the tenth day some
of the four reacted, and at the twelfth day all could hear.
3. The hearing reflex probably occurs early in young rats
that are vigorous and well nourished.
4. To obtain the first hearing reflexes it is necessary to have
rather strong sounds of high pitch.
5. A comparison of the histological structure of the cochlea
in rats of nine days, one of which could hear and the other could
not, shows clear differences in its development of the cochlea.
These consist not in the detachment of the tectorial membrane
from the papilla spiralis, but in the degree of differentiation of
the constituents of the papilla. The tectorial membrane is
connected in both cases at its outer end with the terminal frame
of the lamina reticularis by a thick thread. The papilla is more
differentiated in the hearing rat in several characters. The
tectorial membrane has reached with its outer end the outermost
row of the outer hair cells, but in the not-hearing rat it has not
yet reached the second row of the cells.
6. The form of the papilla and its relation to the surrounding
structures, especially to the tectorial membrane, are in the hearing
rat at nine days very similar to those in the rat at twelve days
of age, though there are some differences between them in absolute size.
7. The freeing of the tectorial membrane from the papilla
spiralis is not necessary to the appearance of the hearing reflex,
156 ANATOMICAL AND PHYSIOLOGICAL STUDIES ON
but the differentiation of the papilla, its shifting inward, its
change in form and position under the membrana tectoria, appear
to be important.
8. Since the papilla develops from the base toward the apex, it
first reaches in the lower turn a high degree of differentiation,
and this part first begins to function. Therefore the rat can
hear only sounds of high pitch when it first responds.
9. This result accords with that well-known fact that the
papilla in the lower turn responds to sounds of a high pitch,
while in the upper turn it responds to sounds of low pitch.


==III. On the Growth of the Largest Nerve Cells in the Ganglion Vestibulare==
==III. On the Growth of the Largest Nerve Cells in the Ganglion Vestibulare==

Revision as of 16:51, 18 September 2020

Embryology - 19 Apr 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Wada T. Anatomical and physiological studies on the growth of the inner ear of the albino rat. (1923) Memoirs of the Wistar Institute of Anatomy and Biology, No. 10, Philadelphia. Rat Inner Ear (1923): I. Cochlea growth | II. Inception of hearing and cochlea growth | III. Growth of largest nerve cells in ganglion vestibulare | Final Summary | Literature Cited

Online Editor 
Mark Hill.jpg
This historic 1923 book by Wada is a historic description of the rat inner ear.


Internet Archive
Modern Notes: rat | inner ear

Rat Links: rat | Rat Stages | Rat Timeline | Category:Rat
Historic Embryology - Rat 
1915 Normal Albino Rat | 1915 Abnormal Albino Rat | 1915 Albino Rat Development | 1921 Somitogenesis | 1925 Neural Folds and Cranial Ganglia | 1933 Vaginal smear | 1938 Heart


Hearing Links: Introduction | inner ear | middle ear | outer ear | balance | placode | hearing neural | Science Lecture | Lecture Movie | Medicine Lecture | Stage 22 | hearing abnormalities | hearing test | sensory | Student project

  Categories: Hearing | Outer Ear | Middle Ear | Inner Ear | Balance

Historic Embryology - Hearing 
Historic Embryology: 1880 Platypus cochlea | 1892 Vertebrate Ear | 1902 Development of Hearing | 1906 Membranous Labyrinth | 1910 Auditory Nerve | 1913 Tectorial Membrane | 1918 Human Embryo Otic Capsule | 1918 Cochlea | 1918 Grays Anatomy | 1922 Human Auricle | 1922 Otic Primordia | 1931 Internal Ear Scalae | 1932 Otic Capsule 1 | 1933 Otic Capsule 2 | 1936 Otic Capsule 3 | 1933 Endolymphatic Sac | 1934 Otic Vesicle | 1934 Membranous Labyrinth | 1934 External Ear | 1938 Stapes - 7 to 21 weeks | 1938 Stapes - Term to Adult | 1940 Stapes | 1942 Stapes - Embryo 6.7 to 50 mm | 1943 Stapes - Fetus 75 to 150 mm | 1946 Aquaductus cochleae and periotic (perilymphatic) duct | 1946 aquaeductus cochleae | 1948 Fissula ante fenestram | 1948 Stapes - Fetus 160 mm to term | 1959 Auditory Ossicles | 1963 Human Otocyst | Historic Disclaimer
Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

Anatomical and Physiological Studies on the Growth of the Inner Ear of the Albino Rat

Tokujiro Wada

Wistar Institute Of Anatomy And Biology

Contents

Introduction 5

Material 6

Technique 6

I. On the growth of the cochlea

A. On the growth of the radial distance between the two spiral ligaments 13

B. On the growth of the tympanic wall of the ductus cochlearis. . . 16

1. Membrana tectoria 28

2. Membrana basilaris 39

3. The radial distance between the habenula perforata and the inner corner of the inner pillar cell at base 47

4. The radial distance between the habenula perforata and the outer corner of the inner pillar cell (resp., the inner corner of the outer pillar cell) at base 48

5. The radial basal breadth of the outer pillar cell (including the outer pillar) 57

6. The radial distance between the habenula perforata and the outer border of the foot of the outer pillar cell 63

7. The greatest height of the greater epithelial ridge (dem grossen Epithelwulst Bottcher's s. Organon Kollikeri) resp. of the inner supporting cells 63

8. The radial distance between the labium vestibulare and the habenula perforata 68

9. The radial distance between the labium vestibulare and the inner edge of the head of the inner pillar cell 71

10. Vertical distance from the membrana basilaris to the summit of the pillar cells 75

11. The greatest height of the tunnel of Corti 77

12. The height of the papilla spiralis at the third series of the outer hair cells 77

13. The greatest height of Hensen's supporting cells 83

14. The angle subtended b> the extension of the surface of the lamina reticularis with the extended plane of the membrana basilaris 84

15. Lengths of the inner and outer pillar cells 85

16. Inner and outer hair cells 94

17. Deiter's cells 109

18. Summary and discussion 116

C. On the growth of the largest nerve cells in the ganglion spirale . 124

observations 124

Discussion 136

Conclusions . ... 143

II. Correlation between the inception of hearing and the growth of the cochlea

Observation 146

Discussion 152

Conclusions 155

III. On the growth of the largest nerve cells in the ganglion vestibulare

Material and technique 156

Observations 156

Discussion 165

Conclusions 168

Final summary 169

Literature cited . . . 171


Introduction

Since Alphonse Corti, in 1851, published his famous work on the cochlea of mammals, studies on this organ have been made by many authors and have produced fairly concordant results. Concerning the postnatal growth of the internal ear, however, systematic studies are lacking. Especially is there no investigation, so far as I know, on the growth of the nerve cells in the ganglion spiral, not even in the great work of Retzius. ('84).

It was the special object of these studies, therefore, to follow the growth of the cells forming the spiral ganglion from birth to maturity and to correlate the changes in them with the appearance of the functional responses and with the structural changes in the membranous cochlea. In the course of this investigation studies were made also on the cells of the ganglion vestibulare, in order to see whether these cells differed in their growth from the cells in the spiral ganglion. Both of these ganglia are situated in the course of nervus acusticus, but have, as is well known, entirely different functions.

Thus determinations have been made on the diameters of the cells of the ganglion spirale and of their nuclei at different ages; of the nucleus-plasma ratios and of then* growth in relation to those of other portions of the membranous cochlea. For the cells of the vestibular ganglion similar determinations were also made. Finally, these results have been compared with those obtained from the study of other craniospinal ganglia in the albino rat.

In presenting my results I shall begin with a description of the changes in the larger portions of the membranous cochlea and pass from these to the cell elements themselves, and then to the observations on the ganglion cells and to the correlation between hearing and the growth of the cochlea.


Material

For the present studies forty male and thirty female albino rats were used, representing every phase of postnatal growth and having approximately standard body weights. These were all from the colony of The Wistar Institute, and were sometimes from the same, and sometimes from different litters.

At first all these rats were tested for their ability to hear and their equilibrium, and it was ascertained that after about twelve days of age, or somewhat earlier, they responded positively to the test for hearing. Such examinations were deemed necessary, to make certain that the rats used were normal.

I have arranged the animals thus tested in fourteen groups according to age, each group having five individuals in it. Serial sections from all these cochleas were made by methods to be given later. Most of them were in the plane of the vertical axis of the cochlea, but some were at right angles to it.

From the former I selected four ears in each group for the study of the growth of the cochlea. For the study of the growth of the ganglion vestibulare, I have used for the most part the same specimens. For the study of the sections at right angles to the vertical axis of the cochlea, sections from one ear of each group were used.

Technique

In order to obtain good preparations of this delicate organ, the method of vital fixation (injection under anaesthesia) was used. The method employed, and which proved almost ideal, was that introduced by Metzner and Yoshii ('09), Siebenmann and Yoshii ('08) and somewhat improved by Sato ('17). After the animals had been tested to make sure that they were quite normal, the fixing solution was injected through the aorta under ether. The brain was then carefully removed, care being taken not to drag the trunk of the nervus acusticus, as noted by Nager ('05), and the bulla tympanica was opened to allow the further penetration of the fluid.


The bony labyrinth with its surrounding bones was then placed in the fixing solution for two weeks, the fluid being renewed every day.

The fixing solution which I used consists, according to Yoshii ('09), of

10 per cent formol 74 parts

M tiller's fluid 24 parts

Glacial acetic acid 2 parts

According to Tadokoro and Watanabe ('20), this solution is one of the best, ranking with that of Wittmaack ( '04, '06) and that of Nakamura ('14).

This injection method is sometimes difficult to apply to very young rats on account of the small size and the delicacy of the vessels. When injection failed in very young animals, then immediately the head was cut off and put directly in the fixing fluid. Owing to the incomplete calcification of the very young cochlea, the fixing solution enters rapidly and fixes the deepseated organs in good condition. Since the parts of the internal ear are not yet well developed in the very young rats, they do not suffer from this method of fixation as do the older cochleas.

Indeed, no differences are to be seen between the sections prepared by vital fixation and by decapitation in very young rats.

For decalcification I have employed the following solution during three days, renewing it every day.

Decalcifying fluid

5 per cent aqueous nitric acid 49 parts

10 per cent formol 49 parts

Glacial acetic acid 2 parts

After the specimens had been washed in running water for three days, they were passed through the alcohols from 50 to 97 per cent. For the imbedding I have used 'parlodion' with good results. Here it is to be mentioned that all the cochleas were treated in the same way, even unossified cochlea being passed through the decalcifying fluid, so that there should be absolutely no differences in treatment.


The next important matter is the determination of the plane of the section. For the measurement of growth changes it was necessary to obtain corresponding sections from the several cochleas. In an organ like that of Corti, which changes in its details from one end to the other, however, it is very difficult to accomplish this, but I believe that I have overcome most of the difficulties.

After much testing, I found that a section parallel to the under surface of os occipitale in the fronto-occipital direction runs nearly exactly parallel to the axis of the modiolus of the cochlea. In order to get the same direction from right to left, I have taken as the standard the transverse plane of the under surface of the os occipitale, controlling the direction of the section with a magnifying glass. Thus nearly the same radial direction and nearly corresponding places in the cochlea were obtained in the several series of sections. This makes possible a trustworthy comparison of the measurements and drawings.

The cross-section of the cochlea was gotten by making the plane of the cut transverse to the axis of the modiolus. To get the corresponding levels is difficult. At first I divided all the serial sections by 2^, which is the number of complete turns in the cochlea of the albino rat. Next, from the number of the slides representing each turn, I determined nearly the corresponding level in the cochlea according to age.

All the sections were 10;x in thickness. The sections were stained for the most part with haematoxylin and eosin, but sometimes by Heidenhain's iron haematoxylin or the iron haematoxylin and Van Gieson's stain. For the measurements, however, only the sections stained with haematoxylin and eosin were used.

For the examination of the larger parts of the cochlea and their relations, the sections were projected on a sheet of paper by the Leitz-Edinger projection apparatus, at a magnification of exactly a hundred diameters, and the outline of the image accurately traced. The remaining measurements of the ganglion cells and the smaller portions of the cochlea were made directly under the microscope. The measurements made on the tympanic wall of the cochlea are somewhat complicated, but by the aid of figures 1 and 2 they may be explained. In figure 1 lines 1-1, 1-1'. 2-2, 3-3 indicate, respectively, the height of the arch of Corti, of the tunnel of Corti, of the papilla spiralis (Huschke) at the third series of outer hair cells, and of Hensen's supporting cells, respectively, above the plane of the membrana basilaris.

Lines 4-4' which are the extensions of the surface of the lamina reticularis and of the membrana basilaris, subtend the angle 8.

To get the exact measurements of the radial breadth of the membrana tectoria is very difficult, if not impossible, because it is sinuous in its course; moreover, it differs in thickness from point to point. Therefore, it has been variously described by different authors. Intra vitam fixation tends to prevent distortion. We divide the membrana tectoria, figure 1, into two portions, the first or inner (7-7'-9-9') and the second or outer (5-5 '-7-7') or outer zones of Retzius; each of these is again divided in two at 6-6' and 8-8', as shown in figure 1.

I have measured the radial distance of each portion and added all four together. This total approximates the natural radial breadth of this membrane, and since the sections have all been prepared in the same way and examined by the same method, the relations during growth can be followed.

In figure 2, 1-1 and 2-2, mark the length of the inner and outer pillar cells, respectively, from base to the point, which is situated just under their junction. It is to be noted here that the term ' pillar cell ' here applies to the pillars in the strict sense and does not include the associated cells.

Distances 3 and 7 in figure 2 show the basal breadth of the inner and outer pillars, respectively. The former is identical with the distance between the habenula perforata and the outer corner of the inner pillar after the inner corner of the pillar has reached the habenula perforata, but there is some difference between the two distances in very young rats. Distance 4 is that between the habenula perforata and the inner corner of the outer pillar; distance 5 is that between the habenula perforata and the outer corner of the outer pillar. The latter represents at the same time the radial breadth of the zona arcuata of the membrana basilaris.



Fig. 1 Showing the localities for the measurement of each part of the tympanic wall of ductus cochlearis in the albino rat, 100 days old radial vertical section. 1-1, height from the basal plane to the surface of pillar cells; 1-1', greatest height of the tunnel of Corti; 2-2, height of papilla spiralis at the third series of the outer hair cells; 3-3, height of Hensen's supporting cells; 4~4', 4 indicates the extension of the membrana basilaris and 4' the extension of the lamina reticularis. The two lines subtend the angle 0. The radial breadth of the membrana tectoria is taken as the sum of the four segments between the lines 5-5' and 9-9'.

Fig. 2 Showing the method of measurement for several parts of the tympanic wall of the ductus cochlearis in the albino rat, 100 days old. 1-1, length of inner pillar cell without head; 2-2, length of outer pillar cell without head Distance 3 shows radial distance between habenula perforata and the outer corner of inner pillar at base after twelve days of age this equals the radial basal breadth of inner pillar. Distance 4, radial distance between habenula perforata and the inner corner of outer pillar at base. Distance 5, radial breadth of the zona arcuata (Deiters') of membrana basilaris, and at the same time it indicates radial distance between habenula perforata and the outer corner of outer pillar at base. Distance 6, radial distance between the outer corner of inner pillar and the inner corner of outer pillar at base. Distance 7, radial basal breadth of outer pillar. Distance 8, radial distance between the habenula perforata and outer corner of inner pillar cell at base. Distance 9, radial basal breadth of the outer pillar cell. Distance 10, radial breadth of zona pectinata of the membrana basilaris. Distance 11, radial breadth of entire membrana basilaris.

Fig. 3 Showing the general outline of the cochlea in the radial vertical section albino rat, 100 days of age.



Abbreviations

Line 1, 1, distance between two basal L.L.S., limbus laminae spiralis

spiral ligaments L.S., ligamentum spirale

Line 2, 2, distance between two apical L.S.O., lamina spiralis ossea

spiral ligaments M.T., membrana tectoria

7, first turn N.C., nervus cochlearis

II, second turn O., bone

///, third turn P.S., papilla spiralis

IV, fourth turn S., stria vascularis

D.C., ductus cochlearis S.T., scala tympani

G.S., ganglion spirale S.V., scala vestibuli G.V., ganglion vestibulare


Distance 6 is that between the outer corner of the inner pillar and the inner corner of the outer pillar. Distance 8 is that between the habenula perforata and the outer corner of the inner pillar cell. Distance 9 shows the radial basal breadth of the outer pillar cell plus the outer pillar. Distance 11 shows the radial breadth of the membrane basilaris comprising distance 5 (zona arcuata) and 10, which is the radial breadth of the zona pectinata of the membrana basilaris.

III. On the Growth of the Largest Nerve Cells in the Ganglion Vestibulare

Material and technique

The material used for the present study was in a great part the same that was employed for the studies reported in chapter 1, with the addition of some new specimens as shown in table 114 and table 94. In the slides obtained in the radial vertical section we see the vestibular ganglion cells situated in a single group at the radix of the cochlea (Fig. 3 G. V.). As four ears were used in each age group, four cell groups were examined at each age. Besides these fourteen age groups, six rats used for cross-sections, in chapter 1, were also included.

The measurements were made in the same way and under the same conditions as those described earlier for the cells of the spiral ganglion. Since the ganglion vestibulare consists of two parts, the ganglion vestibulare superius and inferius, the ten largest cells were taken from each part and the results averaged.

Observations

By way of introduction I wish to say a word about equilibration in the young rat. The young just born crawl over on each other and seem to attempt to find the mothers nipples. They turn the head to and fro and roll over on the flanks, belly, or back. While resting they take their normal position or lie on the side. When turned on their backs they endeavor to regain the normal


GROWTH OF THE INNER EAR OF ALBINO RAT


157


position. The fore legs are of more use than the hind in making readjustments. The tails hang down between the hind legs.

TABLE 114

Data on rats used for the study of the cells of the ganglion vestibulare (radial section).

See also table 94


AOB


BOOT WEIGHT


BODY LENGTH


BEX


BIDE


AUDITOHT RESPONSE


days


grams


mm.





1


5


44


9


R.




4


44


9


R.




5


48


d 1


R. L.



3


9


60


<?


R. L.




8


56


9


R. L.



6


10


64


a


R.




10


64


9


R. L.




11


62


(7


R.



9


11


67


<?


R. L.


+



9


58


9


R.




10


57


tf


R.



12


13


70


d 1


R. L.


+



12


68


9


R.


+



15


72


c?


R.


+


15


13


74


d"


R. L.


+



14


75


9


R. L.


+


20


30


.96


d 1


R. L.


+



28


94


c?


R. L.


+


25


34


101


9


R. L.


+



34


100


d 1


R. L.


+


50


58


121


9


R. L.


+



43


104


(f


R. L.


+


100


146


176


c?


L.


+



103


154


9


L.


+



101


152


9


R. L.


+


150


154


184


9


R. L.


+



189


191


c?


R.


+



199


192


d 1


R.


+


260


137


162


9


R.


+



140


171


9


R. L.


+



134


178


9


R.


' +


367


205


202


rf


L.


+



170


182


9


L.


+



179


196


9


R. L.


+


546


282


222


d 1


R. L.


+



227


204


d 1


R. L.


+


At three days they move and crawl very actively. They tend to assume the normal position. When rolled over on the back or side they succeed in regaining the normal position in


158


ANATOMICAL AND PHYSIOLOGICAL STUDIES ON


a few seconds. When six days old the rats have fairly well coordinated movements. They use their fore and hind legs effectively and in the same way. When the mother 's body touches them they respond quickly by searching for the nipples.

At nine days they move much more quickly and the movements are well coordinated. .Though the eyes are still closed, they


TABLE 115

Diameters of the cells and their nuclei in the ganglion vestibulare in radial vertical section

(Chart 43)


AGE


BODY WEIGHT


DIAMETERS IN M


CELL BODY


NUCLEUS


Long


Short


Computed


Long


Short


Computed


days


grams








1


5


21.2


19.5


20.3


12.4


11.1


11.7


3


9


23.7


22.2


22.9


12.5


11.6


12.0


6


11


24.0


22.1


23.0


12.3


11.9


11.9


9


10


24.8


23.0


23.9


12.5


11.6


12.0


12


13


24.9


23.0


23.9


12.5


11.7


12.1


15


13


24.8


23.0


23.9


12.5


11.6


12.0


20


27


25.0


23.3


24.1


12.3


11.6


11.9


25


34


25.2


23.6


24.4


12.5


11.8


12.1


50


50


25.6


23.6


24.5


12.5


11.6


12.0


100


112


25.5


23.9


24.7


12.8


11.9


12.3


150


174


25.4


23.5


24.4


12.8


11.6


12.2


260


138


25.8


23.4


24.6


12.4


11.7


12.0


367


184


26.2


24.9


25.5


12.9


11.8


12.3


546


255


26.5


24.2


25.3


12.8


11.8


12.2


Ratios 1

-367 days




1 1.3




1:1.1


1546 "




1.2




1.0


15367 "




1.1




1.0


crawl toward the object sought. When turned over on the back they regain the normal position immediately. While resting they lie on their bellies with all the legs spread well apart.

Twelve-day-old rats, though the eyes are still closed, go to and fro actively with good coordination, but are somewhat slower than the adults. The body loses its fetal red color through the development of the first hairs. After this period the rats do not differ greatly from the adult in their general behavior.


GROWTH OF THE INNER EAR OF ALBINO RAT


159


The growth changes in the ganglion cells of the ganglion vestibulare. In table 115 (chart 43) are given the values for the diameters of the cell bodies and their nuclei in the largest cells of the ganglion vestibulare. At the bottom of the last column for the cell body and for the nucleus, respectively, are recorded the ratios at 1 to 367, 1 to 546, and 15 to 367 days. The last ratio was taken


25

a

20 15 10


  • GEDAYSH




25


50


5O 1OO 2OO 30O 4OO 5OO


Chart 43 The diameter of the largest cell bodies and of the nuclei from the ganglion vestibulare. table 115.

Cell bodies. -.-.-.-.-. Nuclei.

to facilitate a comparison with the data in table 118 which begin at 15 days.

Looking at the ratios of the cell bodies and of their nuclei from 1 to 546 days, it appears that the ganglion cells increase 1.2 in diameter, while their nuclei have only a very slight increase, and therefore the ratio is 1 : 1.0. This increase in the cell bodies is continuous from birth to old age, but after fifteen days is very slow. In the nucleus we see a slight increase at the earlier


160 ANATOMICAL AND PHYSIOLOGICAL STUDIES ON

ages, after which the values are nearly constant. This means that after birth the size of the cell bodies and their nuclei does not increase so much as do those of the spiral ganglion cells, or, expressed in another way, the cells in the vestibular ganglion have developed earlier than those of the spiral ganglia and at birth have already attained nearly their full size.

On the comparison of the diameter of the cell bodies and their nuclei in the nerve cells of ihe ganglion vestibulare according to sex. For this purpose twelve age groups of albino rats were used. In seven cases we have two cochlea in each group in the same sex, in which the average value is recorded. In table 116 are entered the values for these diameters and at the foot of the table the data are analysed. They reveal no evidence of a significant difference in the diameters according to sex.

On the comparison of the diameters in the cell bodies and nuclei of the nerve cells in the ganglion ves ibulare according to side. For the present study fourteen age groups were employed. As indicated in table 117, the data in five instances are based on the average of two cochleas of the same side. Table 117 enables us to make the comparison of the diameters of the cell bodies and their nuclei on both sides, and the analysis of the data given at the bottom of the table shows that there is no difference in these characters according to side.

On the morphological changes in the cells of the vestibular ganglion. Figure 14 illustrates semi-diagrammatically the ganglion cells in the vestibular ganglion of the albino at birth, 20 and 367 days of age. These figures, as in the ganglion spirale, have been magnified 1000 times and the absolute values of the diameters are given in table 115.

As seen in figure 14, both the cell body and the nucleus are at birth already well developed and more precocious in their development than the cells in any of the other cerebrospinal ganglia thus far examined. The cytoplasm is relatively abundant and the Nissl bodies are present, though both of these characters become more marked later.

The nucleus is also large, the chromatin somewhat differentiated and the so-called 'Kernfaden' often occur. Generally speaking,




I Day


20 Days


14


366 Days


Fig. 14 Showing setrii-diagrammatically the size and the morphological changes in the ganglion cells in the ganglion vestibulare of the albino rat at the age of 1, 20 and 366 days. All cell figures have been magnified 1000 diameters.


GROWTH OF THE INNER EAR OF ALBINO RAT


161


therefore, the cells have the characteristics of the mature elements though they stain less deeply than in the adult. At twenty days of age the cell body is enlarged and fully mature. The Nissl

TABLE 116

Comparison of the diameters of the cells and their nuclei in the ganglion vestibidare

according to sex


AGE


BODY WEIGHT


NUMBER OF RATS


8EX


COMPUTED DIAMETERS


Cell body


Nucleus


days


grams






1


6


2


f


20.8


11.9





9


19.9


11.5


3


9


2


tf


21.7


11.8



8


2


9


23.8


12.2


6


11


2


tf


22.7


11.9



10


2


9


23.1


12.1


9


11


1


d*


23.8


12.5



9


1


9


23.8


12.1


12


15


1


cf


24.4


12.2



12


1


9


23.1


11.9


15


13


2


cf


24.3


12.2



13


2


9


23.4


11.9


20


30


1


cf


24.7


11.9



19


1


9


24.6


12.6


25


34


2


d"


24.4


11.9



34


2


9


24.4


12.4


50


43


2


cT


26.1


12.4



58


2


9


22.6


11.4


100


146


1


<?


26.3


12.8



103


1


9


23.4


12.6


150


194


2


rf 1


24.4


12.5



154


2


9


24.4


12.0


365


205


1


<f


24.2


11.7



170


1


9


24.6


12.1


Average for male


24.0


12.1


Average for female


23.4


12.1


Males larger


6


7


Females larger


3


5


Males and females equal


3




bodies are more differentiated and the nucleus is mature, though it shows only a slight increase in size.

At 367 days the histological structures appear much as at twenty days, but the diameters of both the cell body and the nucleus have very slightly increased. This is in contrast to the change which occurs in the cells of the spiral ganglion.


162


ANATOMICAL AND PHYSIOLOGICAL STUDIES ON


In order to study the form of the cells of the ganglion vestibulare the measurements also were made on the cross-sections. Table


TABLE 117


Comparison of the diameters of the cells and their nuclei in the ganglion vestibulare according to side


AGE


BODY WEIGHT


NUMBER OF RATS


SIDE


COMPUTED DIAMETERS


Cell body


Nucleus


days


grams






1


4


1


R.


20.1


12.0



5


1


L.


22.0


12.5


3


9


2


R.


23.0


11.8





L.


22.6


12.3


6


10


1


R.


23.2


12.1





L.


23.5


12.0


9


11


1


R.


25.1


12.3





L.


23.8


12.5


12


15


1


R.


24.4


12.2



13


1


L.


25.1


12.5


15


13


2


R.


24.2


12.2





L.


23.6


11.9


20


30


1


R.


24.7


11.9





L.


23.5


11.4


25


34


2


R.


23.9


12.1





L.


24.9


12.2


50


50


2


R.


23.1


11.6





L.


25.6


12.3


100


101


1


R.


25.0


12.0





L.


24.8


11.7


150


199


1


R.


25.1


12.8



154


1


L.


25.4


12.5


263


140


1


R.


26.5


12.3





L.


25.1


12.4


368


179


1


R.


27.2


12.6





L.


26.2


13.0


546


255


2


R.


26.0


12.4





L.


24.6


12.0


Average right side


24.4


12.2


Average left side


24.3


12.2


Right larger


8


6


Left larger


6


8


118 (chart 44) shows the results. Looking at the ratios of 15 to 371 days, we see the same rate of increase in the cell bodies and the nuclei as that in the radial section; i.e., in the cell bodies 1 : 1.1 and in the nuclei 1 : 1.0. Comparing the diameters at each


GROWTH OF THE INNER EAR OF ALBINO RAT


163


TABLE 118

Diameters of the cell bodies and their nuclei in the ganglion vestibulare, on crosssection (chart 44)




DIAMETERS M


AOK


BOOT WEIGHT


CELL BODY


NUCLEUS




Long


Short


Computed


Long


Short


Computed


days


grams








15


20


25.1


22.8


23.9


12.4


11.6


12.0


20


27


25.2


23.4


24.3


12.5


11.7


12.1


25


39


25.2


24.0


24.6


12.3


12.0


12.1


100


95


26.6


24.7


25.6


12.8


11.8


12.3


150


169


26.7


24.7


25.7


13.0


11.7


12.3


371


220


26.8


25.3


26.0


12.8


11.8


12.3


Ratio 15-371 days 1:1.1




1 :1.0


25


20


15


10


25


50


50 10O 20O 300 40O 5OO


Chart 44 The diameters of the cell bodies and of their nuclei from the ganglion vestibulare, after fifteen days (cross-section), table 118. Cell bodies. -.-.-.-.-. Nuclei.


164


ANATOMICAL AND PHYSIOLOGICAL STUDIES ON


age in both the radial and cross-sections, they are almost the same, with a slight tendency for the cells in the cross-section to give higher values, which suggests that the long axes of these cells tend to lie in the plane of the section.

On the nucleus-plasma relations of the ganglion cells in the ganlion vestibulare. In table 119 are entered the computed diameters of the cell bodies and their nuclei in the radial section, and in the last column the ratios of the volume of the nucleus to that of the cytoplasm obtained by the method previously given. As

TABLE 119

Nucleus-plasma ratios of the cells in the. ganglion vestibulare radial vertical section




COMPUTED DIAMETERS M


AGE


BODY WEIGHT


Cell body


Nucleus


Nucleus-plasma ratios


days 1


grams 5


20.3


11.7


1 :4.2


3


9


22.9


12.0


5.9


6


11


23.0


11.9


6.2


9


10


23.9


12.0


6.9


12


13


23.9


12.1


6.7


15


13


23.9


12.0


6.9


20


27


24.1


11.9


7.3


25


34


24.4


12.1


7.2


50


50


24.5


12.0


7.5


100


112


24.7


12.3


7.1


150


174


24.4


12.2


7.0


260


138


24.6


12.0


7.6


367


184


25.5


12.3


7.9


546


255


25.3


12.2


7.9


seen, the ratio is at birth relatively large, 1 : 4.2, and this increases with age, in the earlier stages considerably, but in the later, less rapidly. In the oldest age group it is largest, 1: 7.9.

On the cross-section the nucleus-plasma ratio is also progressive and the increase is very regular (table 120). Comparing the ratios in the radial with those in the cross-sections, they are found to be nearly the same at fifteen twenty and twenty-five days, but at the later ages those in the cross-sections are somewhat larger than in the radial. It is difficult to determine whether the ratios on the cross-section are really larger or whether the


GROWTH OF THE INNER EAR OF ALBINO RAT


105


result depends on the fact that the number of the cells here measured is only one-fourth of that measured in the radial section, and hence fewer cells of smaller size were included. At any rate, these ganglion cells in both the radial and crosssections of the cochlea appear to grow at about the same rate. The statistical constants for these cells and their nuclei are given in tables 121 and 122.

Discussion

The nerve cells in the ganglion vestibulare are, as seen from the above description, already well developed at birth both in size and histological structure. After that time they grow con TABLE 120

Nucleus-plasma ratios of cells of the ganglion vestibulare, in cross-section




DIAMETERS COMPUTED M



BOOT



AGE


WEIGHT






Cell body


Nucleus


Nucleus-plasma






ratios


days


grams





15


20


23.9


12.0


1 :6.9


20


27


24.3


12.1


7.1


25


39


24. ti


12.1


7.4


100


95


25.6


12.3


8.0


150


169


25.7


12.3


8.1


371


220


26.0


12.3


8.4


tinuously but slowly so long as followed. The increase from 1 to 546 days in the ratios of the diameters is in the cell body 1: 1.3, in the nucleus 1: 1.1, and is therefore very small. In the cerebrospinal ganglion cells and in the cells of the cerebral cortex, studied in the albino rat, there is no case which shows such a small rate of increase between birth and maturity. The following table 123 shows the ratios of increase which have been found.

It is to be noted that for the cells of the seventh spinal ganglion and the spinal cord, the ratios were taken from 17 to 360 days. If we had the ratios from 1 to 360 days, they would be without question much larger.

There are a few measurements on the size of the ganglion cells in the vestibular ganglion of various animals in the liter


166


ANATOMICAL AND PHYSIOLOGICAL STUDIES ON


ature. Schwalbe ('87) and Alexander ('99) report measurements on these cells in several animals, but for the reasons already given when considering the diameters of the cells in the ganglion spirale, the values obtained by the authors are not repeated here.

TABLE 121

Giving the mean, standard deviation and coefficient of variability, with their respective probable errors, for the diameters of the cells in the ganglion vestibulare, in radial-vertical section


AGE


CELL NUCLEUS


MEAN


STANDARD DEVIATION


COEFFICIENT OF VARIABILITY


days 1


Cell


20.1 0.16


1.46 0.11


7.3 0.55



Nucleus


11.7 0.11


0.99 0.07


8.5 0.64


3


Cell


22.6 0.14


1.33 0.10


5.9 0.44



Nucleus


11.9 0.07


0.63 0.05


5.3 0.40


6


Cell


22.8 0.13


1.23 0.09


5.4 0.41



Nucleus


11.9 0.05


0.43 0.03


3.6 0.27


9


Cell


23.6 0.16


1.48 0.11


6.3 0.48



Nucleus


12.0 0.0<9


0.82 0.06


6.8 0.52


12


Cell


23.6 0.14


1.28 0.10


5.4 0.41



Nucleus


12.0 0.06


. 59 . 04


4.9 0.37


15


Cell


23.6 0.13


1.21 0.09


5.1 0.39



Nucleus


12.1 0.06


0.60 0.05


5.0 0.38


20


Cell


23.9 0.16


1.54 0.11


6.5 0.49



Nucleus


11.9 0.10


0.90 0.07


7.6 0.55


25


Cell


24.2 0.16


1.48 0.11


6.1 0.46



Nucleus


12.1 0.08


0.74 0.06


6.1 0.46


50


Cell


24.1 0.30


2.80 0.21


11.6 0.88



Nucleus


11.8 0.09


0.86 0.06


7.3 0.55


100


Cell


24.3 0.20


1.86 0.14


7 . 7 . 58



Nucleus


12.2 0.09


0.86 0.06


7.0 0.53


150


Cell


24.1 0.18


1.70 0.13


7.1 0.53



Nucleus


12.2 0.09


0.83 0.06


6.8 0.52


260


Cell


24.3 0.26


2.45 0.18


10.1 0.76



Nucleus


11.9 0.07


0.67 0.05


5.6 0.42


367


Cell


25.2 0.22


2.07 0.16


8.2 0.62



Nucleus


12.3 0.09


0.88 0.07


7.2 0.54


546


Cell


25.0 0.19


1.80 0.14


7.2 0.54



Nucleus


12.1 0.09


0.81 0.06


6.7 0.50


On the differences between the growth of the cells in the ganglion spirale and ganglion vestibulare. The foregoing discussion has made plain that the vestibular ganglion cells grow not only in size, but also in histological structure very much before birth, while after birth they grow slowly though continuously. On the other hand, the spiral ganglion cells are relatively immature at


GROWTH OF THE INNER EAR OF ALBINO RAT


167


birth, but in the earlier stages after birth grow very rapidly, reach at twenty days their maximum size, and then diminish slowly. This great difference in the course of growth is probably related to the maturity of the functions of the animal.

TABLE 122

Giving the mean, standard deviation and coefficient of variability with their respective probable errors for the diameters of the cells in the ganglion vestibulare on cross-section


AGE

days


CELL NUCLEUS


MEAN


STANDARD DEVIATION


COEFFICIENT OF VARIABILITY


15


Cell


23.8 0.21


1.00 0.15


4.2 0.58



Nucleus


12.0 0.12


0.55 0.08


4.6 0.69


20


Cell


23.9 0.20


0.92 0.14


3.9 0.58



Nucleus


12.1 0.06


0.30 0.05


2.5 0.37


25


Cell


24.4 0.20


0.94 0.14


3.9 0.58



Nucleus


12.1 0.03


0.16 0.02


1.3 0.20


100


Cell


25.4 0.32


1.51 0.23


5.9 0.90



Nucleus


12.3 0.15


0.72 0.11


5.9 0.88


150


Cell


25.6 0.20


0.94 0.14


3.7 0.55



Nucleus


12.4 0.09


0.42 0.06


3.4 0.51


371


Cell


25.9 0.41


1.91 0.29


7.4 1.11



Nucleus


12.3 0.06


0.26 0.04


2.1 0.32


TABLE 123 Ratios of diameters between the ages given.



CEREBRAL CORTEX



DONALDSON AND



(SUGITA, '18)



NAOABAKA. '18


CELL GROUP


LAMINA


LAMINA


OA88ERIAN


SPIRAL


VESTIBULAR


7TH


EFFERENT



PYHA

GANO

GANGLION


GANGLION


GANGLION


SPINAL


SPINAL



MIDIS


LIONARIS


NITTONO


WADA


WADA


GANGLION


CORD





C20)





CELLS


Age









days


1-730


1-730


1-330


1-546


1-546


17-360


17-360


Cell









body


1 :1.6


1 : 1.6


1 : 1.69


1 : 1.6


1 :1.2


1 :1.3


1 :1.2


Nucleus


1.5


1.5


1.20


1.2


1.0


1.2


1.2


As a consequence, in the nucleus-plasma ratio there is also a large difference between the cells in the two ganglia. Table 124 shows this.

The ratio at birth in the ganglion vestibulare is large as compared with that in the ganglion spirale, but the increase in this ratio


168 ANATOMICAL AND PHYSIOLOGICAL STUDIES ON

at 546 days is relatively slight as compared with what takes place in the cells of the ganglion spirale. It appears, therefore, that the cells in the vestibular ganglion are at birth in a more mature condition.

As to the correlation between the development of the ganglion cells and the equilibrium function, we have noted that the albino rats, even just after birth, show some sense of equilibrium, though the movements are lacking in coordination. With advancing age the balance of the body is held much better and all the movements gradually become coordinated. The histological structure and the size of the cells at birth suggest that they are functional at that time, and the later increase in the volume and maturity of the cells is accompanied by a corresponding

TABLE 124



GANGLION VESTIBULARE


GANGLION SPIRALE


Nucleus-plasma ratio at one day Nucleus-plasma ratio at 546 days


1 :4.8

7.9


1 : 1.3

4.2


increase in the functional development. When the tactile sense is well developed and the eyes open equilibrium is almost perfected. It is a well-known fact that these two senses have very intimate relations to the maintenance of equilibrium. In this case, as we might expect, the early development of a function is accompanied by an early maturing of the neural mechanism on which it depends.

Conclusions (for the ganglion vestibulare)

1. The measurements were taken on the largest nerve cells of the ganglion vestibulare in the radial section of the cochlea, and the developmental changes during portnatal growth studied in fourteen age groups, comprising four ears in each group. Further, in six age groups the cell size was determined in crosssections. The results have been given n tables 115 and 118 and charts 43 and 44.


GROWTH OF THE INNER EAR OF ALBINO RAT 169

2. The computed diameter at birth is 20.3 [x for the cell body and 11.7 ^ for the nucleus, and at 546 days, 25.3 and 12.2 n, respectively. Therefore the cells at birth are comparatively large and increase in size very slowly, but the increase is continuous.

3. The increase in the ratio of the cell body is as 1 : 1.3, of the nucleus as 1 : 1.1. We have between the same age limits no such small rate of increase in any other cerebrospinal ganglion studied in the albino rat. This small ratio indicates that the cells in the vestibular ganglion are well developed at birth.

4. We find no appreciable difference in the diameters of the cell bodies or the nuclei according either to sex or side.

5. Morphologically, the cells at birth are well differentiated. The form of the cells is ovoid.

6. The nucleus-plasma ratios are large at birth and increase regularly with age.

7. Comparing the development of the function of equilibrium with the growth of the cells, we see that these are correlated.

Final summary

This study is concerned with the age changes in the organ of Corti and the associated structures. The changes in the largest nerve cells which constitute the spiral ganglion and the vestibular ganglion, respectively, have also been followed from birth to maturity. On pages 116 to 124 are given the summary and discussion of the observations on the growth of the tympanic wall of the ductus cochlearis.

The conclusions reached from the study of the largest nerve cells in the ganglion spirale appear on pages 143 to 145. On pages 155 and 156 are presented the results of the study on the correlation between the response to sound and to the conditions of the cochlea.

Finally, the observations on the growth of the largest cells in the ganglion vestibu'are are summarized on pages 168 and 169.

It is not necessary to again state in detail the conclusions reached in the various parts of this study.

At the same time, if we endeavor to obtain a very general picture of the events and changes thus described, this may be sketched as follows:


170 ANATOMICAL AND PHYSIOLOGICAL STUDIES ON

Within the membranous cochlea there occurs a wave of growth passing from the axis to the periphery as shown in figures 4 to 13. The crest or highest point of the tissue mass appears at birth near the axis, in the greater epithelial ridge, and then progressively shifts toward the periphery, so that at maturity it is in the region of the Hensen cells. With advancing age the hair cells come to lie more and more under the tectorial membrane and the pillar cells seem to shift toward the axis.

At from 9 to 12 days the tunnel of Corti appears and the rat can hear.

All of these changes occur first in the basal turn and progress toward the apex. The mature relations are established at about twenty days. There are thus two waves of change in the membranous cochlea, from the axis to the periphery and the other from the base to the apex. The rat can usually hear at twelve days of age or about three days before the eyes open.

The largest cells in the ganglion spirale are very immature at birth, reach their maximum at twenty days, and after that diminish in size, slightly but steadily. The rat hears, therefore, before these cells have reached their full size.

The largest cells in the vestibular ganglion are precocious and remarkably developed, even at birth. They cease their rapid growth at about fifteen days of age, but increase very slightly though steadily throughout life.


Literature Cited

ALAGNA, G. 1909 Beitrag zur normalen und pathologischen Histologie

der Ganglien des Akustikus. Ztscher. f. Ohrenh., Bd. 59. ALEXANDER, G. 1899 Zur Anatomie des Ganglion vestibulare der Sauge thiere. Sitz.-Ber. Akad. Wiss. math. nat. Cl., Wien, Bd. 108,

Abt. 3. AYERS, H. 1890 On the origin of the internal ear and the functions of the

semi-circular canals and cochlea. Milwaukee.

1891 Die Membrana tectoria-was sie ist, und die Membrana

basilaris-was sie verrichet. Anat. Anz., Bd. 6.

1889 On the membrana basilaris, the membrana tectoria and the nerve endings in the human ear. Zool. Bull., vol. 1.

BARTH 1889 Beitrag zur Anatomie der Schnecke. Anat. Anz., Bd. 4. BOTTCHER, A. 1869 Ueber Entwickelung und Bau des Gehorlabyrinthes

nach Untersuchungen an Saugethieren. F. Blockmann u. Sohn,

Dresden.

1872 Kritische Bemerkungen und neue Beitrage zur Literatur

des Gehorlabyrinths. Dorpat. BUSACCA, A. 1916 Studi sulla curva di accrescimento delle cellule nervose

dei gangli spinali nei mammiferi. Arch. ital. di aaat. e di embriologia, T. 15. CORTI, A. 1851 Recherches sur 1'organe de 1'ouie des mammiferes. Ztschr.

f. wiss. Zool., Bd. 3. CZINNER, H. I., UND HAMMERSCHLAG, V. 1897 Beitrag zur Entwicklung sgeschichte der Corti'schen Membran. Archiv f. Ohrenh., Bd. 44. DONALDSON, H. H. 1915 The rat. Reference tables and data for the albino

rat (Mus norvegicus albinus) and the Norway rat (Mus norvegicus).

Memoirs of the Wister Institute of Anatomy and Biology, no. 6. DONALDSON, H. H., AND NAGASAKA, G. 1918 On the increase in the diameters

of nerve cell bodies and of the fibers arising from them, during the

later phases of growth (albino rat). Jour. Comp. Neur., vol. 29. DUPUIS, A. 1894 Die Cortische Membran. Anat. Hefte, Bd. 3. VON EBNER, V. 1902 In A. Kolliker's Hanbd. d. Gewebelehre des Menschen,

Bd. 3, 2 Halfte, S. 899-959. EWALD, J. R. 1899 Zur Physiologie des Labyrinthes. VI. Mitteil. Eine

neue Hortheorie. Arch. ges. Physiol., Bd. 76. EWALD, J. R. UND JADERHOLM, G. A. 1906 Auch alle Gerausche geben,

wenn sie intermittiert werden, Intermittenztone. Arch. ges. Physiol.,

Bd. 115. GOTTSTEIN, J. 1872 Ueber den feineren Bau und die Entwickelung der

Gehorschnecke der Saugethiere und des Menschen. Arch. f. inikr.

Anat., Bd. 8. HARDESTY, I. 1908 The nature of the tectorial membrane and its probable

rfile in the anatomy of hearing. Am. Jour. Anat., vol. 8.

1915 On the proportions, development and attachment of the

tectorial membrane. Am. Jour. Anat., vol. 18.


172 ANATOMICAL AND PHYSIOLOGICAL STUDIES ON

HASSE, C. 1866 Die Schnecke der Vogel. ' Ztscher. f. wiss. Zool., Bd. 17.

1873 Die vergleichende Morphologic und Histologie des hautigen

Gehororganes der Wirbeltiere. Suppl. zu dem anatom. Studien

von C. Hasse, Bd. 1, Leipzig. HELD, H. 1902 Untersuchungen fiber den feineren Bau des Ohrlabyrinths

der Wirbeltiere. I. Zur Kenntnis des Corti'schen Organs u. der

librigen Sinnesapparate des Labyrinths bei Saugetieren. Abhandl.

d. k. Sachs. Ges. d. Wiss., Math.-phys. Kl., Bd. 28.

1909 Untersuchungen tiber den feineren Bau des Ohrlabyrinths

der Wirbeltiere. II. Zur Entwicklungsgeschichte des Corti'schen

Organs und der Macula acustica bei Saugetieren und Vogeln.

Abhandl. d. k. Sachs. Ges. d. Wiss., Math-phys. Kl., Bd. 31. HENLE, J. 1866 Handbuch d. systemat. Anatomic des Menschen. II.

Bd. Eingeweidelehre des Menschen. Braunschweig.

1873 Handbuch d. systemat. Anatomic des Menschen. II.

Bd. Eingeweidelehre des Menschen. 2. Aufl. Braunschweig, v. HENSEN, 1863 Zur Morphologic der Schnecke, des Menschen und der

Saugetiere. Ztscher. f. wiss. Zool., Bd. 13.

1873 Dr. A. Bottcher: Ueber Entwicklung und Bau des Geholabyrinths nach Untersuchungen an Saugetieren. Arch. f. Ohrenh.,

Bd. 6. HOESSLI, H. 1912 Weitere experimentelle Studien liber die akustische

Schadigung des Saugetierlabyrinths. Ztschr. f. Ohrenh., Bd. 64. HUNTER, W. S. 1914 The auditory sensitivity of the white rat. Jour. Animal

Behavoir, vol. 4. - 1915 The auditory sensitivity of the white rat. Jour. Animal

Behavoir, vol. 5.

1918 Some notes on the auditory sensitivity of the white rat.

Psychobiology, vol. 1. KATO, T. 1913 Zur Physiologic der Binnenmuskeln des Ohres. Arch. f. d.

ges. Physiol., Bd. 150. KISHI, J. 1902 Uber den Verlauf und die periphere Endigung des Nervus

cochleae. Arch. f. mikr, Anal., Bd. 59. KISHI, K. 1907 Cortische Membran und Tonempfindungstheorie. Arch. f.

d. ges. Physiol., Bd. 116. v. KOLLIKER, A. 1867 Handbuch der Gewebelehre des Menschen. 5. Aufl.

Leipzig. KOLMER, W. 1907 Beitrage zur Kenntnis des feiaeren Baues des Gehororgans

mit besonderer Beriicksichtigung der Haussaugetiere. Arch. f.

mikr. Anat., Bd. 70. KRATJSE, F. 1906 Entwicklungsgeschichte des Gehororgans. Handb. d.

Entwicklungslehre der Wirbeltiere, Bb. 2, Teil 2. Jena. KREIDL, A., TJND YANASE, J. 1907 Zur Physiologie der Cortischen Membran.

Zentralbl. f. Physiol., Bd. 21. LANE, H. H. 1917 The correlation between structure and function in the

development of the special senses of the white rat. Diss. presented

to Princeton Univ. University of Oklahoma, Norman.


GROWTH OF THE INNER EAR OF ALBINO RAT 173

LEVI, G. 1908 I gangli cerebrospinali Studi di istologia comparata e di

istogenesi. Arch. Hal. Anat. Embr., T. 7, Suppl. MARX, H. 1909 Untersuchungen uber e. \perimentelle Schadigungen des

Gehororgans. Ztschr. f. Ohrenh., Bd. 59. METZNER AND YOSHIT 1909 Experimentelle Schadigungen des GehSrorgans

durch Schalleinwirkungen. Verb. d. Ges. deutsch Nat. Aerzte

Vers., 2. Teil. 2. Halfte. MIDDENDORP, H. W. 1867 Het vliezig slakkenhuis in zijne wording en in

den ontwikkelden toestand. Groningen.

1868 Zur Histologie und Entwickelung der Schnecke. Monatschr.

f. Ohrenh., nos. 11 and 12. XAGER, F. R. 1905 Uber postmortale histologische Artefakte am Nervus

acusticus und ihre Erklarung, ein Beitrag zur Lehre der Corpora

amylacea. Ztschr. f. Ohrenh., Bd. 51. NAGER, F. R., UND YOSHII, U. 1910 Zur Kenntnis der cadaverosen Verander ungen des innerea Ohres. Zeitschr. f. Ohrenh., Bd. 60. XAKAMURA, Y. 1914 Experimentelle Untersuchungen uber die Einwirkung

des Aethyl und Methylalkols auf dera Gehororgan. Beitr, z. Anat.,

Physiol., Path. u. Therap. d. Ohres, Bd. 8. NITTONO, KENJI 1920 On the growth of the neurons composing the gasserian

ganglion of the albino rat, between birth and maturity. Jour.

Comp. Neur., vol. 32. PRENTISS, C. W. 1913 On the development of the membrana tectoria with

reference to its structure and attachments. Am. Jour. Anat., vol. 14. PRITCHARD, U. 1878 The development of the organ of Corti. Jour. Anat. and

Physiol., vol. 13.

RETZIUS, G. 1884 Das Gehororgan der Wirbeltiere. 11. Stockholm. RICKENBACHER, O. 1901 Untersuchungen Uber die embryonale Membrana

tectoria des Meerschweinchens. Anat. Hefte, Bd. 16. SATO, N. 1917 Der histologische Bau der Vogelschnecke und ihre Schadigung

durch akustische Rei/e und durch Detonation. Basel. SCHAFER, E. A. 1909 Quain's elements of anatomy, vol. 3, part 2, llth

ed., London.

SCHWALBE, G. 1887 Lehrbuch der Anatomic der Sinnesorgane. Erlangen. SCOTT, .SYDNEY 1909 A contribution to the histology of the human osseous

and membranous labyrinth. J. of Anat. Physiol., vol. 43, pp. 329-345. SHAMBAUGH, G. E. 1910 Das Verhaltniss zwischen der Membrana tectoria

und dem Cortischen Organ. Ztschr. f. Ohrenh., Bd. 62.

1910 A The physiology of the cochlea. Ann. Otol. Rhinol. and

Laryngol., vol. 19.

1910B The physiology of tone perception. Ann. Otol. Rhinol. and

Laryngol., vol. 19. SIEBENMANN UND YOSHII 1908 Praparate von zirkumskripter Labyrinthitis.

Verhandl. der Deutsch. otolog. Gesellsch. SMALL, W. S. 1899 Notes on the psychic development of the young white

rat. Am. Jour. Psychol., vol. II.


174 ANATOMICAL AND PHYSIOLOGICAL STUDIES ON

SUGITA, N. 1918 Comparative studies on the growth of the cerebral cortex.

VI. On the increase in size and on the developmental changes of

some nerve cells in the cerebral cortex of the albino rat during the

growth of the brain. Jour. Comp. Neur., vol. 29. TADOKORO, K., AND WATANABE, T. 1920 Experimental studies on the vital

fixations of the cochlea. Ikaijiho (Medical Review, Japan), no.

1345, p. 552. VAN. DER STRICHT, O. 1918 The genesis and structure of the membrana

tectoria and the crista spiralis of the cochlea. Con. to Embryology

(Carnegie Inst. of Wash.), no. 227. WATSON, J. B. 1907 Kinaesthetic and organic sensations: their rdle in the

reactions of the white rat to the maze. Psychol. Review, Monograph

Suppl., vol. 8. WINIWARTER, A. v. 1870 Untersuchungen iiber die Gehorschnecke der

Saugetiere. Sitz. d. k. Akad. d. Wiss. in Wein, Bd. 61. WITTMAACK, K. 1904 Ueber Markscheidendarstellung und den Nachweis

von Markhiillen der Ganglienzellen im Akustikus. Arch. f. Ohrenh., Bd. 61.

1906 Zur histo-pathologischen Untersuchung des Gehororgans mit besonderer Berucksichtigung der Darstellung der Fett und MyelinSubstanzen. Ztschr. f. Ohrenh., Bd. 51.

1907 Ueber Schadigungen des Gehors durch Schalleinwirkungen. Verhandl. d. deutsch. otol. Gesellsch., Jena.

WITTMAACK, K., UND LAUROWITSCH, Z. 1912 Ueber artefizielle, postmortale und agonale Beeinflussung der histologischen Bef unde im membranes en Labyrinthe. Ztschr. f. Ohrenh., Bd. 65.

YOSHII, U. 1909 Experimentelle Untersuchungen iiber die Schadigung des Gehororgans durch Schalleinwirkung. Ztschr. f Ohrenh., Bd. 58.