Book - A History of Science 15

From Embryology
Embryology - 22 Apr 2019    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Williams HS. A History of Science. (1904) Harper and Bros. New York.

A History of Science: Arabian Medicine | Mediaeval Science in the West | The Great Anatomists | The coming of Harvey | Leeuwenhoek Discovers Bacteria | Medicine in the 16th and 17th Century | Philosopher-Scientists and new Institutions | 18th Century Anatomy and Physiology Part 1 | 18th Century Anatomy and Physiology Part 2 | 18th Century Anatomy and Physiology Part 3 | 19th Century Anatomy and Physiology Part 1 | 19th Century Anatomy and Physiology Part 2 | 19th Century Anatomy and Physiology Part 3 | Theories Of Evolution Part 1 | Theories Of Evolution Part 2 | 18th Century Medicine | 19th Century Medicine Part 1 | 19th Century Medicine Part 2 | Brain and Mind | Brain Structure | Embryology History
Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic Textbook" and "Historic Embryology" appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms and interpretations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

Theories Of Evolution Part 2

Darwin and the Origin of the Species

Charles Darwin (1809 – 1882)

But even at this time the fancied security of the special-creation hypothesis was by no means real. Though it seemed so invincible, its real position was that of an apparently impregnable fortress beneath which, all unbeknown to the garrison, a powder-mine has been dug and lies ready for explosion. For already there existed in the secluded work-room of an English naturalist, a manuscript volume and a portfolio of notes which might have sufficed, if given publicity, to shatter the entire structure of the special-creation hypothesis. The naturalist who, by dint of long and patient effort, had constructed this powder-mine of facts was Charles Robert Darwin, grandson of the author of Zoonomia.


As long ago as July 1, 1837, young Darwin, then twenty-eight years of age, had opened a private journal, in which he purposed to record all facts that came to him which seemed to have any bearing on the moot point of the doctrine of transmutation of species. Four or five years earlier, during the course of that famous trip around the world with Admiral Fitzroy, as naturalist to the Beagle, Darwin had made the personal observations which first tended to shake his belief of the fixity of species. In South America, in the Pampean formation, he had discovered "great fossil animals covered with armor like that on the existing armadillos," and had been struck with this similarity of type between ancient and existing faunas of the same region. He was also greatly impressed by the manner in which closely related species of animals were observed to replace one another as he proceeded southward over the continent; and "by the South-American character of most of the productions of the Galapagos Archipelago, and more especially by the manner in which they differ slightly on each island of the group, none of the islands appearing to be very ancient in a geological sense."


At first the full force of these observations did not strike him; for, under sway of Lyell's geological conceptions, he tentatively explained the relative absence of life on one of the Galapagos Islands by suggesting that perhaps no species had been created since that island arose. But gradually it dawned upon him that such facts as he had observed "could only be explained on the supposition that species gradually become modified." From then on, as he afterwards asserted, the subject haunted him; hence the journal of 1837.


It will thus be seen that the idea of the variability of species came to Charles Darwin as an inference from personal observations in the field, not as a thought borrowed from books. He had, of course, read the works of his grandfather much earlier in life, but the arguments of Zoonomia and The Temple of Nature had not served in the least to weaken his acceptance of the current belief in fixity of species. Nor had he been more impressed with the doctrine of Lamarck, so closely similar to that of his grandfather. Indeed, even after his South-American experience had aroused him to a new point of view he was still unable to see anything of value in these earlier attempts at an explanation of the variation of species. In opening his journal, therefore, he had no preconceived notion of upholding the views of these or any other makers of hypotheses, nor at the time had he formulated any hypothesis of his own. His mind was open and receptive; he was eager only for facts which might lead him to an understanding of a problem which seemed utterly obscure. It was something to feel sure that species have varied; but how have such variations been brought about?


It was not long before Darwin found a clew which he thought might lead to the answer he sought. In casting about for facts he had soon discovered that the most available field for observation lay among domesticated animals, whose numerous variations within specific lines are familiar to every one. Thus under domestication creatures so tangibly different as a mastiff and a terrier have sprung from a common stock. So have the Shetland pony, the thoroughbred, and the draught-horse. In short, there is no domesticated animal that has not developed varieties deviating more or less widely from the parent stock. Now, how has this been accomplished? Why, clearly, by the preservation, through selective breeding, of seemingly accidental variations. Thus one horseman, by constantly selecting animals that "chance" to have the right build and stamina, finally develops a race of running-horses; while another horseman, by selecting a different series of progenitors, has developed a race of slow, heavy draught animals.


So far, so good; the preservation of "accidental" variations through selective breeding is plainly a means by which races may be developed that are very different from their original parent form. But this is under man's supervision and direction. By what process could such selection be brought about among creatures in a state of nature? Here surely was a puzzle, and one that must be solved before another step could be taken in this direction.


The key to the solution of this puzzle came into Darwin's mind through a chance reading of the famous essay on "Population" which Thomas Robert Malthus had published almost half a century before. This essay, expositing ideas by no means exclusively original with Malthus, emphasizes the fact that organisms tend to increase at a geometrical ratio through successive generations, and hence would overpopulate the earth if not somehow kept in check. Cogitating this thought, Darwin gained a new insight into the processes of nature. He saw that in virtue of this tendency of each race of beings to overpopulate the earth, the entire organic world, animal and vegetable, must be in a state of perpetual carnage and strife, individual against individual, fighting for sustenance and life.


That idea fully imagined, it becomes plain that a selective influence is all the time at work in nature, since only a few individuals, relatively, of each generation can come to maturity, and these few must, naturally, be those best fitted to battle with the particular circumstances in the midst of which they are placed. In other words, the individuals best adapted to their surroundings will, on the average, be those that grow to maturity and produce offspring. To these offspring will be transmitted the favorable peculiarities. Thus these peculiarities will become permanent, and nature will have accomplished precisely what the human breeder is seen to accomplish. Grant that organisms in a state of nature vary, however slightly, one from another (which is indubitable), and that such variations will be transmitted by a parent to its offspring (which no one then doubted); grant, further, that there is incessant strife among the various organisms, so that only a small proportion can come to maturity--grant these things, said Darwin, and we have an explanation of the preservation of variations which leads on to the transmutation of species themselves.

Joseph Dalton Hooker
Joseph Dalton Hooker (1817 – 1911)

This wonderful coign of vantage Darwin had reached by 1839. Here was the full outline of his theory; here were the ideas which afterwards came to be embalmed in familiar speech in the phrases "spontaneous variation," and the "survival of the fittest," through "natural selection." After such a discovery any ordinary man would at once have run through the streets of science, so to speak, screaming "Eureka!" Not so Darwin. He placed the manuscript outline of his theory in his portfolio, and went on gathering facts bearing on his discovery. In 1844 he made an abstract in a manuscript book of the mass of facts by that time accumulated. He showed it to his friend Hooker, made careful provision for its publication in the event of his sudden death, then stored it away in his desk and went ahead with the gathering of more data. This was the unexploded powder-mine to which I have just referred.


Twelve years more elapsed--years during which the silent worker gathered a prodigious mass of facts, answered a multitude of objections that arose in his own mind, vastly fortified his theory. All this time the toiler was an invalid, never knowing a day free from illness and discomfort, obliged to husband his strength, never able to work more than an hour and a half at a stretch; yet he accomplished what would have been vast achievements for half a dozen men of robust health. Two friends among the eminent scientists of the day knew of his labors--Sir Joseph Hooker, the botanist, and Sir Charles Lyell, the geologist. Gradually Hooker had come to be more than half a convert to Darwin's views. Lyell was still sceptical, yet he urged Darwin to publish his theory without further delay lest he be forestalled. At last the patient worker decided to comply with this advice, and in 1856 he set to work to make another and fuller abstract of the mass of data he had gathered.

Alfred Russel Wallace
Alfred Russel Wallace (1823 – 1913)

And then a strange thing happened. After Darwin had been at work on his "abstract" about two years, but before he had published a line of it, there came to him one day a paper in manuscript, sent for his approval by a naturalist friend named Alfred Russel Wallace, who had been for some time at work in the East India Archipelago. He read the paper, and, to his amazement, found that it contained an outline of the same theory of "natural selection" which he himself had originated and for twenty years had worked upon. Working independently, on opposite sides of the globe, Darwin and Wallace had hit upon the same explanation of the cause of transmutation of species. "Were Wallace's paper an abstract of my unpublished manuscript of 1844," said Darwin, "it could not better express my ideas."


Here was a dilemma. To publish this paper with no word from Darwin would give Wallace priority, and wrest from Darwin the credit of a discovery which he had made years before his codiscoverer entered the field. Yet, on the other hand, could Darwin honorably do otherwise than publish his friend's paper and himself remain silent? It was a complication well calculated to try a man's soul. Darwin's was equal to the test. Keenly alive to the delicacy of the position, he placed the whole matter before his friends Hooker and Lyell, and left the decision as to a course of action absolutely to them. Needless to say, these great men did the one thing which insured full justice to all concerned. They counselled a joint publication, to include on the one hand Wallace's paper, and on the other an abstract of Darwin's ideas, in the exact form in which it had been outlined by the author in a letter to Asa Gray in the previous year--an abstract which was in Gray's hands before Wallace's paper was in existence. This joint production, together with a full statement of the facts of the case, was presented to the Linnaean Society of London by Hooker and Lyell on the evening of July 1, 1858, this being, by an odd coincidence, the twenty-first anniversary of the day on which Darwin had opened his journal to collect facts bearing on the "species question." Not often before in the history of science has it happened that a great theory has been nurtured in its author's brain through infancy and adolescence to its full legal majority before being sent out into the world.


Thus the fuse that led to the great powder-mine had been lighted. The explosion itself came more than a year later, in November, 1859, when Darwin, after thirteen months of further effort, completed the outline of his theory, which was at first begun as an abstract for the Linnaean Society, but which grew to the size of an independent volume despite his efforts at condensation, and which was given that ever-to-be-famous title, The Origin of Species by Means of Natural Selection, or the Preservation of Favored Races in the Struggle for Life. And what an explosion it was! The joint paper of 1858 had made a momentary flare, causing the hearers, as Hooker said, to "speak of it with bated breath," but beyond that it made no sensation. What the result was when the Origin itself appeared no one of our generation need be told. The rumble and roar that it made in the intellectual world have not yet altogether ceased to echo after more than forty years of reverberation.

New Champions

Ernst Haeckel (1834-1919)

To the Origin of Species, then, and to its author, Charles Darwin, must always be ascribed chief credit for that vast revolution in the fundamental beliefs of our race which has come about since 1859, and which made the second half of the century memorable. But it must not be overlooked that no such sudden metamorphosis could have been effected had it not been for the aid of a few notable lieutenants, who rallied to the standards of the leader immediately after the publication of the Origin. Darwin had all along felt the utmost confidence in the ultimate triumph of his ideas. "Our posterity," he declared, in a letter to Hooker, "will marvel as much about the current belief (in special creation) as we do about fossil shells having been thought to be created as we now see them." But he fully realized that for the present success of his theory of transmutation the championship of a few leaders of science was all-essential. He felt that if he could make converts of Hooker and Lyell and of Thomas Henry Huxley at once, all would be well.


His success in this regard, as in others, exceeded his expectations. Hooker was an ardent disciple from reading the proof-sheets before the book was published; Lyell renounced his former beliefs and fell into line a few months later; while Huxley, so soon as he had mastered the central idea of natural selection, marvelled that so simple yet all-potent a thought had escaped him so long, and then rushed eagerly into the fray, wielding the keenest dialectic blade that was drawn during the entire controversy. Then, too, unexpected recruits were found in Sir John Lubbock and John Tyndall, who carried the war eagerly into their respective territories; while Herbert Spencer, who had advocated a doctrine of transmutation on philosophic grounds some years before Darwin published the key to the mystery--and who himself had barely escaped independent discovery of that key--lent his masterful influence to the cause. In America the famous botanist Asa Gray, who had long been a correspondent of Darwin's but whose advocacy of the new theory had not been anticipated, became an ardent propagandist; while in Germany Ernst Heinrich Haeckel, the youthful but already noted zoologist, took up the fight with equal enthusiasm.


Against these few doughty champions--with here and there another of less general renown--was arrayed, at the outset, practically all Christendom. The interest of the question came home to every person of intelligence, whatever his calling, and the more deeply as it became more and more clear how far-reaching are the real bearings of the doctrine of natural selection. Soon it was seen that should the doctrine of the survival of the favored races through the struggle for existence win, there must come with it as radical a change in man's estimate of his own position as had come in the day when, through the efforts of Copernicus and Galileo, the world was dethroned from its supposed central position in the universe. The whole conservative majority of mankind recoiled from this necessity with horror. And this conservative majority included not laymen merely, but a vast preponderance of the leaders of science also.


With the open-minded minority, on the other hand, the theory of natural selection made its way by leaps and bounds. Its delightful simplicity--which at first sight made it seem neither new nor important--coupled with the marvellous comprehensiveness of its implications, gave it a hold on the imagination, and secured it a hearing where other theories of transmutation of species had been utterly scorned. Men who had found Lamarck's conception of change through voluntary effort ridiculous, and the vaporings of the Vestiges altogether despicable, men whose scientific cautions held them back from Spencer's deductive argument, took eager hold of that tangible, ever-present principle of natural selection, and were led on and on to its goal. Hour by hour the attitude of the thinking world towards this new principle changed; never before was so great a revolution wrought so suddenly.


Nor was this merely because "the times were ripe" or "men's minds prepared for evolution." Darwin himself bears witness that this was not altogether so. All through the years in which he brooded this theory he sounded his scientific friends, and could find among them not one who acknowledged a doctrine of transmutation. The reaction from the stand-point of Lamarck and Erasmus Darwin and Goethe had been complete, and when Charles Darwin avowed his own conviction he expected always to have it met with ridicule or contempt. In 1857 there was but one man speaking with any large degree of authority in the world who openly avowed a belief in transmutation of species--that man being Herbert Spencer. But the Origin of Species came, as Huxley has said, like a flash in the darkness, enabling the benighted voyager to see the way. The score of years during which its author had waited and worked had been years well spent. Darwin had become, as he himself says, a veritable Croesus, "overwhelmed with his riches in facts"--facts of zoology, of selective artificial breeding, of geographical distribution of animals, of embryology, of paleontology. He had massed his facts about his theory, condensed them and recondensed, until his volume of five hundred pages was an encyclopaedia in scope. During those long years of musing he had thought out almost every conceivable objection to his theory, and in his book every such objection was stated with fullest force and candor, together with such reply as the facts at command might dictate. It was the force of those twenty years of effort of a master-mind that made the sudden breach in the breaswtork{sic} of current thought.


Once this breach was effected the work of conquest went rapidly on. Day by day squads of the enemy capitulated and struck their arms. By the time another score of years had passed the doctrine of evolution had become the working hypothesis of the scientific world. The revolution had been effected.


And from amid the wreckage of opinion and belief stands forth the figure of Charles Darwin, calm, imperturbable, serene; scatheless to ridicule, contumely, abuse; unspoiled by ultimate success; unsullied alike by the strife and the victory--take him for all in all, for character, for intellect, for what he was and what he did, perhaps the most Socratic figure of the century. When, in 1882, he died, friend and foe alike conceded that one of the greatest sons of men had rested from his labors, and all the world felt it fitting that the remains of Charles Darwin should be entombed in Westminster Abbey close beside the honored grave of Isaac Newton. Nor were there many who would dispute the justice of Huxley's estimate of his accomplishment: "He found a great truth trodden under foot. Reviled by bigots, and ridiculed by all the world, he lived long enough to see it, chiefly by his own efforts, irrefragably established in science, inseparably incorporated with the common thoughts of men, and only hated and feared by those who would revile but dare not."

The Origin of the Fittest

Wide as are the implications of the great truth which Darwin and his co-workers established, however, it leaves quite untouched the problem of the origin of those "favored variations" upon which it operates. That such variations are due to fixed and determinate causes no one understood better than Darwin; but in his original exposition of his doctrine he made no assumption as to what these causes are. He accepted the observed fact of variation--as constantly witnessed, for example, in the differences between parents and offspring--and went ahead from this assumption.


But as soon as the validity of the principle of natural selection came to be acknowledged speculators began to search for the explanation of those variations which, for purposes of argument, had been provisionally called "spontaneous." Herbert Spencer had all along dwelt on this phase of the subject, expounding the Lamarckian conceptions of the direct influence of the environment (an idea which had especially appealed to Buffon and to Geoffroy Saint-Hilaire), and of effort in response to environment and stimulus as modifying the individual organism, and thus supplying the basis for the operation of natural selection. Haeckel also became an advocate of this idea, and presently there arose a so-called school of neo-Lamarckians, which developed particular strength and prominence in America under the leadership of Professors A. Hyatt and E. D. Cope.

August Weismann
Friedrich Leopold August Weismann (1834 – 1914)

But just as the tide of opinion was turning strongly in this direction, an utterly unexpected obstacle appeared in the form of the theory of Professor August Weismann, put forward in 1883, which antagonized the Lamarckian conception (though not touching the Darwinian, of which Weismann is a firm upholder) by denying that individual variations, however acquired by the mature organism, are transmissible. The flurry which this denial created has not yet altogether subsided, but subsequent observations seem to show that it was quite disproportionate to the real merits of the case. Notwithstanding Professor Weismann's objections, the balance of evidence appears to favor the view that the Lamarckian factor of acquired variations stands as the complement of the Darwinian factor of natural selection in effecting the transmutation of species.


Even though this partial explanation of what Professor Cope calls the "origin of the fittest" be accepted, there still remains one great life problem which the doctrine of evolution does not touch. The origin of species, genera, orders, and classes of beings through endless transmutations is in a sense explained; but what of the first term of this long series? Whence came that primordial organism whose transmuted descendants make up the existing faunas and floras of the globe?


There was a time, soon after the doctrine of evolution gained a hearing, when the answer to that question seemed to some scientists of authority to have been given by experiment. Recurring to a former belief, and repeating some earlier experiments, the director of the Museum of Natural History at Rouen, M. F. A. Pouchet, reached the conclusion that organic beings are spontaneously generated about us constantly, in the familiar processes of putrefaction, which were known to be due to the agency of microscopic bacteria. But in 1862 Louis Pasteur proved that this seeming spontaneous generation is in reality due to the existence of germs in the air. Notwithstanding the conclusiveness of these experiments, the claims of Pouchet were revived in England ten years later by Professor Bastian; but then the experiments of John Tyndall, fully corroborating the results of Pasteur, gave a final quietus to the claim of "spontaneous generation" as hitherto formulated.


There for the moment the matter rests. But the end is not yet. Fauna and flora are here, and, thanks to Lamarck and Wallace and Darwin, their development, through the operation of those "secondary causes" which we call laws of nature, has been proximally explained. The lowest forms of life have been linked with the highest in unbroken chains of descent. Meantime, through the efforts of chemists and biologists, the gap between the inorganic and the organic worlds, which once seemed almost infinite, has been constantly narrowed. Already philosophy can throw a bridge across that gap. But inductive science, which builds its own bridges, has not yet spanned the chasm, small though it appear. Until it shall have done so, the bridge of organic evolution is not quite complete; yet even as it stands to-day it is perhaps the most stupendous scientific structure of the nineteenth century.

Origin of Species

Origin of Species: Variation under Domestication | Variation under Nature | Struggle for Existence | Natural Selection | Laws of Variation | Difficulties on Theory | Instinct | Hybridism | On the Imperfection of the Geological Record | On the Geological Succession of Organic Beings | Geographical Distribution | Geographical Distribution -- continued | Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Organs | Recapitulation and Conclusion | PDF version | Embryology History

Download - Charles Darwin - Origin of Species PDF Document.

Next

18th Century Medicine


Embryology - 22 Apr 2019    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Williams HS. A History of Science. (1904) Harper and Bros. New York.

A History of Science: Arabian Medicine | Mediaeval Science in the West | The Great Anatomists | The coming of Harvey | Leeuwenhoek Discovers Bacteria | Medicine in the 16th and 17th Century | Philosopher-Scientists and new Institutions | 18th Century Anatomy and Physiology Part 1 | 18th Century Anatomy and Physiology Part 2 | 18th Century Anatomy and Physiology Part 3 | 19th Century Anatomy and Physiology Part 1 | 19th Century Anatomy and Physiology Part 2 | 19th Century Anatomy and Physiology Part 3 | Theories Of Evolution Part 1 | Theories Of Evolution Part 2 | 18th Century Medicine | 19th Century Medicine Part 1 | 19th Century Medicine Part 2 | Brain and Mind | Brain Structure | Embryology History
Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic Textbook" and "Historic Embryology" appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms and interpretations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2019, April 22) Embryology Book - A History of Science 15. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Book_-_A_History_of_Science_15

What Links Here?
© Dr Mark Hill 2019, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G