Blastocyst Development: Difference between revisions

From Embryology
Line 27: Line 27:
==Molecular Factors==
==Molecular Factors==


* E-cadherin - Calcium ion-dependent cell adhesion molecule, a cell membrane adhesive protein required for morula compaction
* '''E-cadherin''' - Calcium ion-dependent cell adhesion molecule, a cell membrane adhesive protein required for morula compaction
* epithin - A type II transmembrane serine protease, identified in mouse for compaction of the [[M#morula|morula]] during preimplantation embryonic development. Expressed from 8-cell stage at blastomere contacts and co-localises in the morula with E-cadherin. [http://www.ncbi.nlm.nih.gov/pubmed/15848395 PMID: 15848395]
* '''epithin''' - A type II transmembrane serine protease, identified in mouse for compaction of the [[M#morula|morula]] during preimplantation embryonic development. Expressed from 8-cell stage at blastomere contacts and co-localises in the morula with E-cadherin. [http://www.ncbi.nlm.nih.gov/pubmed/15848395 PMID: 15848395]
* Na, K-adenosine triphosphatase - sodium potassium pump generates an osmotic gradient for fluid flow
* '''Na, K-adenosine triphosphatase''' - sodium potassium pump generates an osmotic gradient for fluid flow
* '''Zonula occludens-1''' - (ZO-1) involved in morula to blastocyst transformation in the mouse [http://www.ncbi.nlm.nih.gov/pubmed/18423437 PMID: 18423437]


==References==
==References==

Revision as of 15:56, 8 May 2010

(Greek, blastos = sprout + cystos = cavity) or blastula, the term used to describe the hollow cellular mass that forms in early development. The blastocyst consists of cells forming an outer trophoblast layer, an inner cell mass and a fluid-filled cavity. The blastocyst inner cell mass is the source of true embryonic stem cells capable of forming all cell types within the embryo. In humans, this stage occurs in the first and second weeks after the zygote forms a solid cellular mass morula stage) and before implantation.


--Mark Hill 19:01, 5 August 2009 (EST) Page under development - notice removed when completed.


Inner Cell Mass

Trophoblast Layer

  • trophectoderm epithelium
  • transport of Na+ and Cl- ions through this layer into the blastocoel

Development Processes

Compaction

  • E-cadherin mediated adhesion initiates at compaction at the 8-cell stage
  • regulated post-translationally via protein kinase C and other signalling molecules

Blastocoel Formation

  • trophectoderm transports of Na+ and Cl- ions through this layer into the blastocoel
  • generates an osmotic gradient driving fluid across this epithelium
  • distinct apical and basolateral membrane domains specific for transport
  • facilitates transepithelial Na+ and fluid transport for blastocoel formation
  • transport is driven by Na, K-adenosine triphosphatase (ATPase) in basolateral membranes of the trophectoderm [1]


Molecular Factors

  • E-cadherin - Calcium ion-dependent cell adhesion molecule, a cell membrane adhesive protein required for morula compaction
  • epithin - A type II transmembrane serine protease, identified in mouse for compaction of the morula during preimplantation embryonic development. Expressed from 8-cell stage at blastomere contacts and co-localises in the morula with E-cadherin. PMID: 15848395
  • Na, K-adenosine triphosphatase - sodium potassium pump generates an osmotic gradient for fluid flow
  • Zonula occludens-1 - (ZO-1) involved in morula to blastocyst transformation in the mouse PMID: 18423437

References

  1. <pubmed>16139691</pubmed>


Articles

<pubmed>19289087, 18817772, 18083014</pubmed>

<pubmed>20157423</pubmed>

Search PubMed

Search April 2010

Search Pubmed: blastocyst development | blastocoel development | inner cell mass development | trophectoderm |


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, March 28) Embryology Blastocyst Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Blastocyst_Development

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G