BGDB Gastrointestinal - Early Embryo

From Embryology
Revision as of 07:58, 30 April 2017 by Z8600021 (talk | contribs)
BGDsmall.jpg
Practical 1: Trilaminar Embryo | Early Embryo | Late Embryo | Fetal | Postnatal | Abnormalities | Lecture | Quiz


We have now reached the end of Week 4 and beginning of 5 of development. Start by looking briefly at the overview of the Carnegie stage 13 embryo GIT from one end to the other.

Then work through the listed specific serial sections of the embryo identifying the GIT features. Alternatively step through the serial sections yourself identifying the tract, its associated mesentries, organs and spaces.

Tract Development

The early developing gastrointestinal tract The later developing gastrointestinal tract
Early Embryo Later Embryo

Carnegie Stage 13 (Week 4-5)

Stage13-GIT-icon.jpg

Page

Stage13 bf1.jpg Stage13 sem1.jpg
The individual serial slices have also been incorporated into a 3D model of this embryo.
Stage 13 - Gastrointestinal Tract
Section Name Description
Stage 13 image 057.jpg

Stage 13 image 058.jpg

B1L


B2L

Pharynx

Head arches cartoon.jpg Note how in this region it is arched over and cut twice in this section.

The righthand side towards the buccopharyngeal membrane, the lefthand side descending into the embryo body. Stage13 B2 excerpt.gif

Central region is the floor of pharynx formed by fusion of 3rd pharyngeal arches = hypopharyngeal eminence (precursor of root of tongue).

Rathke's pouch forming the rudimentary adenohypophysis (anterior pituitary).

Stage 13 image 059.jpg B3L Laryngeal tracheal groove - beginning of ventral compression, at 90 degrees to the lateral plane of the pharynx above this point.

Rudimentary thyroid ventral to aortic sac (also seen in B2, ventral to the hypopharyngeal eminence).

Stage 13 image 060.jpg B4L Laryngeal tracheal groove - Caudal pharynx compressed dorsoventrally.

Note that it lies between the aortic sac (ventrally) directly above the heart and the paired vessels of arch artery 6 and the dorsal aortas. The pale staining region behind these blood vessels is where the vertebral column will form.

Stage 13 image 061.jpg B5L Laryngopharynx - now compressed dorsoventrally between the paired arch artery 6 vessels.
Stage 13 image 063.jpg B7L Glottis - initial separation of the oesophagus (dorsal) from the trachea (ventral).

Note that this is occurring at the level of the heart atria.

Nasal placodes. Pulmonary arteries.

Stage 13 image 064.jpg C1L Gastrointestinal tract oesophagus (dorsal) is now separate from the respiratory trachea (ventral).
Stage 13 image 065.jpg C2L Oesophagus and trachea both surrounded by dense mesenchyme.

Right nasal pit.

Stage 13 image 066.jpg

Stage 13 image 067.jpg

C3L

C4L

Oesophagus and trachea both surrounded by dense mesenchyme.

Common cardinal vein in the posterior wall of the intraembryonic coelom.

The pleuropericardial folds which contribute later to the formation of the pleura and pericardium.

In C4, junction of right common cardinal vein with dorsal wall of sinus venosus.

Left nasal pit.

Stage 13 image 068.jpg C5L Smaller oesophagus and expanding trachea, this is also the upper region of the lung buds.

The ventral anchoring of attachment site is at the most cranial extension of the septum transversum. This attachment now divides the intraembryonic coelom around the trachea into two canals, the left and right pleuro (pericardio-peritoneal) canals.

Canals are lined by coelomic mesothelium and are continuous with whole intraembryonic coelom (they will be referred to hereafter simply as coelomic canals).

The pleuroperitoneal fold on the medial side of the right common cardinal vein will form part of the diaphragm.

Stage 13 image 069.jpg C6L Trachea expanded and beginning to bifurcate to the major bronchial branches for each lung.

Lateral extension of pulmonary mesenchyme is moulded to shape of coelomic canals. Oesophagus lumen obliterated (common site of oesophageal atresia and/or tracheo-oesophageal fistula). Prominent R pleuroperitoneal fold.

Stage 13 image 070.jpg C7L Trachea bifurcated to the major bronchial branches for each lung.

Note dorsal extent of coelomic canals.

Oesophagus lumen reappears caudal to bifurcation.

Distinct R (smaller on L) pleuroperitoneal fold below the common cardinal vein.

Stage 13 image 071.jpg D1L Oesophagus/stomach junction.

Right lung bud bronchus still visible, left bronchus ends above this section. Note the oesophagus now lies in the midline between the 2 bronchi.

Coelomic canals.

Stage 13 image 072.jpg D2L Ovoid stomach with developing space of the lesser sac on R.

Dorsal and ventral attachments of the mesenchyme are now known as dorsal and ventral mesogastria. Coelomic canals.

Stage 13 image 073.jpg D3L Rotation of stomach (seen from above) to right side.

Note change in outline of coelomic canals due to presence of liver.

Lesser sac. Note thick mesothelium lining the coelom along left edge of stomach, the primordium of the spleen and greater omentum along greater curvature.

Liver embedded in septum transversum (ventral border of septum transversum contributes to diaphragm).

Stage 13 image 074.jpg D4L Rotation of stomach (seen from above) to right side.

Ventral mesogastrium - Stomach is attached ventrally to the liver. (note the position of the ductus venosus)

Dorsal mesogastrium - within this structure the spleen will begin to form and later the greater omentum.

Peritoneal spaces - identify greater and lesser sac.

Stage 13 image 076.jpg D6L Pyloric region of stomach.

Ventral mesogastrium - Stomach is closely attached ventrally to the liver.

Dorsal mesogastrium - within this structure the spleen will begin to form and later the greater omentum.

Peritoneal spaces - identify greater and lesser sac.

Stage 13 image 081.jpg E4L Midgut.

Region close to the umbilicus. Note the close associated portal vein and the paired placental (umbilical) veins.

Stage 13 image 085.jpg F1L Midgut.

Looping out of body wall ventrally (cut tangentially).

Also note the righthand side hindgut region.

Stage 13 image 098.jpg G7L Caudal pharynx (extending laterally, ventral to dorsal aorta - cf B4). Stomach, mesentery
Stage 13 image 097.jpg G6L Narrow oesophagus. Tracheal bifurcation dorsal to sinus venosus.

Peritoneal Cavity

  • Fusion of the two separate intra-embryonic coelom spaces.
  • Intestinal loss of ventral attachment, except at the level of the stomach, dorsal attachment becomes true mesentery.


Stomach Development

The stomach initially appears at this stage (5 weeks) as a dilatation of the GIT in the foregut, which over the next 2 weeks will continue to expand to a fusiform structure and differential growth will it rotate in both the longitudinal and the horizontal planes.

<html5media height="520" width="490">File:Stomach rotation 01.mp4</html5media>

Click Here to play on mobile device

Differential growth of the ventral and dorsal stomach walls leads to establishing a lesser and greater curvature.

Key:

  • Yellow - endoderm and splanchnic mesoderm of stomach.
  • Red - mesentry (ventral at front and dorsal at back). The dorsal mesogastrium will form the greater omentum and the ventral mesogastrium will form the lesser omentum.
  • Blue - vagus nerve branches (left and right). A 90 degree rotation (during week 7) brings the left vagus anteriorly (to the front) and carries the right vagus posteriorly (to the back).


These combined rotations position the stomach in its adult orientation and movement of the mesenteries also moves the developing liver to the right and generates the greater omentum and lesser sac (see animations below).

Page | Play

Lesser Sac Development

Development of Lesser Sac Development of Greater Omentum
Lesser sac 01 icon.jpg Greater omentum 001 icon.jpg
Page | Play Page | Play

Key: Yellow - endoderm of stomach. Orange - liver developing in ventral mesogastrium. Red - spleen developing in dorsal mesogastrium.

Note the narrow tubular connection between the intestinal loop and the yolk sac.



Gastrointestinal Tract Movies  
Mesoderm 001 icon.jpg
 ‎‎Week 3 Mesoderm
Page | Play
Week3 folding icon.jpg
 ‎‎Week 3
Page | Play
Amnion 001 icon.jpg
 ‎‎Amniotic Cavity
Page | Play
Endoderm 002 icon.jpg
 ‎‎Endoderm
Page | Play
Stomach rotation 01 icon.jpg
 ‎‎Stomach Rotation
Page | Play
Gastrointestinal tract growth 01 icon.jpg
 ‎‎Tract Growth
Page | Play
Greater omentum 001 icon.jpg
 ‎‎Greater Omentum
Page | Play
Lesser sac 01 icon.jpg
 ‎‎Lesser sac
Page | Play
Urogenital septum 001 icon.jpg
 ‎‎Urogenital Septum
Page | Play
Stage13-GIT-icon.jpg
 ‎‎GIT Stage 13
Page | Play
Stage22-GIT-icon.jpg
 ‎‎GIT Stage 22
Page | Play
Stage23 MRI S04 icon.jpg
 ‎‎Sagittal GIT
Page | Play
ChickenGITmotility-icon.jpg
 ‎‎GIT Motility
Page | Play
Gastroschisis 01.jpg
 ‎‎Gastroschisis
Page | Play
Omphalocele 01 icon.jpg
 ‎‎Omphalocele
Page | Play
Stage 13 (week 5) Stage 22 (week 8) Stage 23 (week 8) GIT Abnormalities Ultrasound


BGDsmall.jpg
Practical 1: Trilaminar Embryo | Early Embryo | Late Embryo | Fetal | Postnatal | Abnormalities | Lecture | Quiz


Terms

  • coelom - (Greek, koilma = cavity) Term used to describe a fluid-filled cavity or space. Placental vertebrate development have both extraembryonic (outside the embryo) and intraembryonic (inside the embryo) coeloms. The extraembryonic coeloms include the yolk sac, amniotic cavity and the chorionic cavity. The initial single intraembryonic coelom located in the lateral plate mesoderm will form the 3 major body cavities: pleural, pericardial and peritoneal.
  • greater omentum - A peritoneal fold of splanchnic mesoderm extending from the greater curvature of the stomach and hanging ventrally down "like an apron" in the peritoneal cavity over the small intestine. It forms initially in the embryo and fetus as a loop of the dorsal mesentery, which later fuses to form a single sheet attached to the posterior body wall. The lesser omentum is a smaller ventral peritoneal fold extending from lesser curvature of the stomach to liver.
  • lesser omentum - The smaller peritoneal fold of splanchnic mesoderm extending from lesser curvature of the stomach to liver formed from the ventral mesentery at this level of the gastrointestinal tract. The second larger greater omentum extends from the greater curvature of the stomach and hanging down "like an apron" ventrally over the small intestine.
  • lesser sac - (bursa omentalis, omental bursa) opening into the space behind the stomach and on the side of the lesser curvature.


Additional Information

Additional Information - Content shown under this heading is not part of the material covered in this class. It is provided for those students who would like to know about some concepts or current research in topics related to the current class page.

Stage 11 to 13

Human embryos digestive tract was initially formed by a narrowing of the yolk sac, and then several derived primordia such as the pharynx, lung, stomach, liver, and dorsal pancreas primordia differentiated during Carnegie stage 12 (21-29 somites) and Carnegie stage 13 (≥ 30 somites).[1]

  • ≥  27 somites - liver bud seen
  • Carnegie stage 13 - dorsal pancreas appeared as definitive buddings
    • ≥  33 somites around dorsal pancreas buddings the small intestine bent
  • ≥  34 somites - stomach is spindle-shaped
  • ≥  35 somites - small intestine rotated around the cranial-caudal axis, begun to form a primitive intestinal loop, which led to umbilical herniation.

Stomach curvature

Recent animal model studies suggest that the main driver of formation of stomach curvature is more about asymmetric growth of the left and right walls of the tube rather than the model of two 90 degree rotations.

  • Stomach curvature is generated by left-right asymmetric gut morphogenesis[2] "Left-right (LR) asymmetry is a fundamental feature of internal anatomy, yet the emergence of morphological asymmetry remains one of the least understood phases of organogenesis. Asymmetric rotation of the intestine is directed by forces outside the gut, but the morphogenetic events that generate anatomical asymmetry in other regions of the digestive tract remain unknown. Here, we show in mouse and Xenopus that the mechanisms that drive the curvature of the stomach are intrinsic to the gut tube itself. The left wall of the primitive stomach expands more than the right wall, as the left epithelium becomes more polarized and undergoes radial rearrangement. These asymmetries exist across several species, and are dependent on LR patterning genes, including Foxj1, Nodal and Pitx2 Our findings have implications for how LR patterning manifests distinct types of morphological asymmetries in different contexts."
  1. <pubmed>26995337</pubmed>
  2. <pubmed>28242610</pubmed>


BGDsmall.jpg
Practical 1: Trilaminar Embryo | Early Embryo | Late Embryo | Fetal | Postnatal | Abnormalities | Lecture | Quiz



BGDsmall.jpg

BGDB: Lecture - Gastrointestinal System | Practical - Gastrointestinal System | Lecture - Face and Ear | Practical - Face and Ear | Lecture - Endocrine | Lecture - Sexual Differentiation | Practical - Sexual Differentiation | Tutorial


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link



Cite this page: Hill, M.A. (2024, March 28) Embryology BGDB Gastrointestinal - Early Embryo. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/BGDB_Gastrointestinal_-_Early_Embryo

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G