Axolotl Development

From Embryology
Notice - Mark Hill
Currently this page is only a template and will be updated (this notice removed when completed).


Adult Axolotl

Axolotls are the larval form of the Mexican Salamander amphibian and are an animal model used in limb regeneration studies. Axolotls take about 12 months to reach sexual maturity, males release spermatophore into the water and the female may take them up, eventually laying around 200-600 eggs on plants. Egg development takes two weeks, the tadpole-like young remain attached to the plants for a further two weeks. The sequence of axolotl embryonic developmental stages was characterised in the late 1980's.[1]

Some Recent Findings

  • Multiple sequences and factors are involved in stability/degradation of Awnt-1, Awnt-5A and Awnt-5B mRNAs during axolotl development.[2] "Following fertilization in amphibian, early cleavage stages are maternally controlled at a post-transcriptional level before initiation of zygotic transcriptions at the mid blastula transition (MBT). ...Altogether, these results show that oocyte maturation and late cleavages following MBT are two important periods when axolotl Wnt RNAs are highly regulated."
  • The axolotl limb: a model for bone development, regeneration and fracture healing.[3] "Among vertebrates, urodele amphibians (e.g., axolotls) have the unique ability to perfectly regenerate complex body parts after amputation."
  • Expression of heat-shock protein 70 during limb development and regeneration in the axolotl.[4] "Using molecular biology and biochemical techniques, we have characterized both the spatiotemporal and quantitative expression patterns of Hsp-70 in axolotl development and regeneration. Our results show that Hsp-70 is expressed and regulated during axolotl development as in other vertebrates. Our data also demonstrate an up-regulation of the RNA transcript for Hsp-70 during limb regeneration as early as 24 hr after amputation that is maintained up to early differentiation. We also demonstrate a similar pattern of expression for the protein during regeneration. Finally, we show that axolotl Hsp-70 is induced threefold after heat-shock as observed in other vertebrates."

Thyroid Hormone Effects

Axolotl - thyroxine effects.jpg
The effect of thyroxine on the early larval development of the axolotl. The same control and 30 nM T4-treated (TH) sibling animals were photographed at the days postfertilization noted. T4 was added from day 14. (Bar = 1 cm.)[5]


  1. Bordzilovskaya NP, Dettlaf TA, Duhan ST, Malacinski GM: Developmental-stage series of axolotl embryos. In Developmental Biology of the Axolotl. Edited by: Armstrong JB, Malacinski GM. New York: Oxford University Press; 1989:201-219.
  2. <pubmed>20151991</pubmed>
  3. <pubmed>16920050</pubmed>
  4. <pubmed>15965983</pubmed>
  5. <pubmed>9371791</pubmed>| PubMed Central | PNAS


Search Pubmed

Search Pubmed: axolotl development

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.

Animal Development: axolotl | bat | cat | chicken | cow | dog | dolphin | echidna | fly | frog | goat | grasshopper | guinea pig | hamster | horse | kangaroo | koala | lizard | medaka | mouse | opossum | pig | platypus | rabbit | rat | sea squirt | sea urchin | sheep | worm | zebrafish | life cycles | development timetable | development models | K12
Historic Embryology  
1897 Pig | 1900 Chicken | 1901 Lungfish | 1904 Sand Lizard | 1905 Rabbit | 1906 Deer | 1907 Tarsiers | 1908 Human | 1909 Northern Lapwing | 1909 South American and African Lungfish | 1910 Salamander | 1951 Frog | Embryology History | Historic Disclaimer

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2020, April 8) Embryology Axolotl Development. Retrieved from

What Links Here?
© Dr Mark Hill 2020, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G