Animal Development: Difference between revisions

From Embryology
mNo edit summary
mNo edit summary
Line 14: Line 14:


{{Animals}}
{{Animals}}
==Animal Development Times==
{|
| The table below lists the approximate development time for a large number of different animals, ranging from the opossum at 12 days to the elephant at 660 days.
{{Animal development period table}}
| [[File:African elephant cow and calf.jpg|right|80px]]
|}


==Bat==
==Bat==
Line 171: Line 179:
|}
|}


==Animal Development Times==
{|
| The table below lists the approximate development time for a large number of different animals, ranging from the opossum at 12 days to the elephant at 660 days.
{{Animal development period table}}
| [[File:African elephant cow and calf.jpg|right|80px]]
|}


==Other Resources==
==Other Resources==

Revision as of 21:34, 27 November 2013

Chick E12.jpg

Introduction

A list of different animal embryos that have been used in embryology studies that can be found within the Embryology program.

The links are to more detailed pages with overviews of embryological development and the key experimental findings. There are also links to external resources and labs that use these models. Use the title below to open pages with more about information about that animals embryo development and additional pages that relate to that species. There is also an embryology page for K12 students with a table comparing Animal Development Times.


In 2009, science embryology students prepared group projects on some selected animal models of development. Project 1 - Rabbit | Project 2 - Fly | Project 3 - Zebrafish | Group Project 4 - Mouse | Project 5 - Frog | Students Page


Animal Development: axolotl | bat | cat | chicken | cow | dog | dolphin | echidna | fly | frog | goat | grasshopper | guinea pig | hamster | horse | kangaroo | koala | lizard | medaka | mouse | opossum | pig | platypus | rabbit | rat | salamander | sea squirt | sea urchin | sheep | worm | zebrafish | life cycles | development timetable | development models | K12
Historic Embryology  
1897 Pig | 1900 Chicken | 1901 Lungfish | 1904 Sand Lizard | 1905 Rabbit | 1906 Deer | 1907 Tarsiers | 1908 Human | 1909 Northern Lapwing | 1909 South American and African Lungfish | 1910 Salamander | 1951 Frog | Embryology History | Historic Disclaimer

Animal Development Times

The table below lists the approximate development time for a large number of different animals, ranging from the opossum at 12 days to the elephant at 660 days.
Animal Development Time 

Animal Average Days
Bear (Black) 210
Bison 270
Budgerigar 18
Camel 410
cat 65
cow 281
chicken 21
Chimpanzee 236
Chinchilla 111
Coyote 63
deer (Mule) 200
dog 63
Donkey 365
Duck 28
Duck (Muscovy) 35
elephant 660
Elk, Wapiti 255
Ferret 42
Finch 14
Fox 52
Giraffe 425
goat 150
Goose 28
Gorilla 270
Guinea fowl 28
guinea pig 68
Hare 36
Hippopotamus 240
horse 338
Human 274
Leopard 95
Lion 108
Llama 350
Marmoset 150
Mink (European) 41
monkey (Macaque) 180
Moose 240
mouse 20
Muskox 255
Muskrat 29
Nutria, Coypu 130
opossum 12
Otter 285
Panther 90
Parrot 26
Pheasant 24
Pig 114
Pigeon 18
Porcupine 210
Pronghorn 230
Quail 16
rabbit 31
Raccoon 63
rat 21
Reindeer 225
Rhinoceros (African) 480
Seal 330
sheep 150
Shrew 20
Skunk 63
Squirrel (Gray) 40
Swan 35
Tapir 390
Tarsier 182
Tiger 103
Turkey 28
Walrus 450
whale (Sperm) 450
Wolf 63
Woodchuck 31
Animal Notes and Table Data Sources
  • Each animal species has different variations +/- the average values shown in the table.
  • Gestation is the carrying of an animal embryo or fetus inside a female viviparous animal. Except in the case of human gestational age GA.
  • Incubation is the laying of an egg (birds, reptiles, monotremes) with development occurring outside the female animal.


See also - Timeline Comparisons

Animal Development: axolotl | bat | cat | chicken | cow | dog | dolphin | echidna | fly | frog | goat | grasshopper | guinea pig | hamster | horse | kangaroo | koala | lizard | medaka | mouse | opossum | pig | platypus | rabbit | rat | salamander | sea squirt | sea urchin | sheep | worm | zebrafish | life cycles | development timetable | development models | K12
Historic Embryology  
1897 Pig | 1900 Chicken | 1901 Lungfish | 1904 Sand Lizard | 1905 Rabbit | 1906 Deer | 1907 Tarsiers | 1908 Human | 1909 Northern Lapwing | 1909 South American and African Lungfish | 1910 Salamander | 1951 Frog | Embryology History | Historic Disclaimer


Additional Data Sources

  • Theiler K. The House Mouse: Atlas of Mouse Development (1972, 1989) Springer-Verlag, NY. Online
  • Witschi E. Rat Development. In: Growth Including Reproduction and Morphological Development. (1962) Altman PL. and Dittmer DS. ed. Fed. Am. Soc. Exp. Biol., Washington DC, pp. 304-314.
  • The Genetics of the Dog. E Ostrander, E. and Ruvinsky, A. ISBN: 9781845939403 (2012)
  • Merck Veterinary Manual. Aiello, S.E. and Moses, M.A. (ed) ISBN: 0911910506 (2013) Online
  • Witschi, E. (1962) Development: Rat. In: Growth Including Reproduction and Morphological Development. Altman, P. L. , and D. S. Dittmer, ed. Fed. Am. Soc. Exp. Biol., Washington DC, pp. 304-314.
African elephant cow and calf.jpg

Bat

Bat Development - Not a typical embryo used in developmental studies, but first alphabetically and an alternative mammalian model. A recent paper has detailed the short-tailed fruit bat (Carollia perspicillata) embryonic stages of development.

Bat icon.jpg

Cow

Bovine Development - Bovine, not a typical embryological model, but extensively studied due to commercial value and more recently for breeding using IVF techniques. Development takes about 280 days.

Cattle Gestation Periods (Bovine Development)  
Breed Average Days
(±7–10 days)
Angus 281
Ayrshire 279
Brahman 292
Brown Swiss 290
Charolais 289
Guernsey 283
Hereford 285
Holstein 279
Jersey 279
Limousin 289
Shorthorn 282
Simmental 289
Cowcalf.jpg

Chicken

chicken

  • The chicken embryo develops and hatches in 20-21 days and historically these were one of the first embryos to be studied. Cutting a window in the egg shell allows direct observation of the embryo. The Hamburger & Hamilton chicken development staging allowed researchers to develop this model as a key embryological tool.
  • Key research involved the transplanting of quail cells into chick embryos, to later identify their contribution to different embryonic structures, particularly for somite, neural tube and neural crest development.
Avian Incubation Periods  
Bird Days
Budgerigar 18
Chicken 21
Duck 28
Finch 14
Goose 28
Guinea fowl 28
Muscovy duck 35
Parrot 26
Pheasant 24
Pigeon 18
Quail 16
Swan 35
Turkey 28
Chick icon.jpg

Dog

Dog Development - Not a typical embryo used in developmental studies, much work is based on veterinary and breeders.
Dog-adult.jpg

Echidna

Echidna Development - Not a typical embryo used in developmental studies, much work is still required to determine this unique monotreme embryonic stages of development.
Echidna.jpg

Fly

Fly Development - The fruitfly (drosophila) was and is the traditional geneticist's tool. It has been transformed to an magnificent embryologist's tool, with developmental mechanisms being uncovered in this system combined with homolgy gene searches in other species. The fly genome was one of the first to be been completely sequenced. In early development nurse cells sacrifice their cytoplasmic contents to allow egg growth and early pattern formation is through the localization of maternal messenger RNAs (mRNAs).

Fly-icon.png

Frog

Frog Links: Frog Development | 2009 Student Project | 1897 Development of the Frog's Egg | Hans Spemann | Wilhelm Roux | 1921 Early Frog Development | 1951 Rana pipiens Development | Rana pipiens Images | Frog Glossary | John Gurdon | Category:Frog | Animal Development
  • The frog was used by many of the early embryology investigators and currently there are many different molecular mechanisms concerning development of the frog.
  • The eggs develop independently, in relative synchrony and are relatively see-through making staging and observation fairly easy.
  • The frog was a key model for the study of the process of gastrulation.


Frog-icon.png

Grasshopper

Grasshopper Development - The grasshopper has been used as a model in studies of neural development.

Grasshopper- female.jpg

Guinea Pig

Guinea Pig Development - The guinea pig has been used as a model animal in many animal model studies; developmental, dietary, tetragenic, including the effects of maternal temperature on development.

Guineapig icon.jpg

Kangaroo

Kangaroo Development - The tammar wallaby genome has been recently sequenced.

Red-necked wallaby.jpg

Lizard

Lizard Development - Lizards are members of the reptile class of air-breathing, cold-blooded (ectothermic) vertebrates with skin covered in scales.

Lizard embryo 03.jpg

Mouse

mouse

  • The mouse has always been a good embryological model, easy to generate (litters 8-20) and quick (21d).
  • Mouse embryology really expanded when molecular biologists used mice for gene knockouts.
Mouse.jpg

Pig

pig

Sow and piglet.jpg

Platypus

Platypus Development - Not a typical embryo used in developmental studies and we still no very little about the embryonic stages of this unique monotreme development. The platypus also has an amazing sex chromosome organisation.

Platypus.jpg

Rabbit

Rabbit Development - The rabbit along with human, are the few species which show birth defects with thalidomide (teratogenic effects) which were not detected with prior testing on other species.

Rabbit.jpg

Rat

Rat Development - The rat is available as inbred, outbred and mutant strains. They have been generally beaten as a model by their mice brethren, as the molecular tools that became available (stem cells, knockout genes, etc). Rat embryos do have the advantage of being much larger than mouse embryos and easy to breed. Rat development is also generally 1 day behind from mouse.

Rat.jpg

Salmon

Salmon Development - sockeye and chinook.

Worm

Worm Development - Early embryological studies of the worm Caenorhabditis elegans (C.Elegans, so called because of its "elegant" curving movement) characterized the fate of each and every cell in the worm through all stages of development. This worm has recently had its entire genome sequenced.

C elegans.jpg

Zebrafish

Zebrafish-icon.png

Zebrafish Development - Zebrafish are seen as the latest and greatest "model' for embryological development studies. They can be easily genetically altered and develop as practically "see through" embryos, all internal development can be clearly observed from the outside in the living embryo.

Medaka Fish

Medaka - The Japanese rice fish (Oryzias latipes) is a member of the killifish family and used in several developmental studies.

Medaka.jpg


Other Resources

  • Carnegie Stage Comparison - the human embryonic period proper is divided into 23 Carnegie stages. Criteria beyond morphological features include age in days, number of somites present, and embryonic length. This staging can be applied to all vertebrates, and most vertebrate embryos develop during the embryonic period in much the same way, we can directly compare the timing of development for different species.
  • Embryo Staging Systems - stages are based on the external and/or internal morphological development of the vertebrate embryo, and are not directly dependent on either age or size.

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.

  • National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press (US); 2011. Bookshelf link

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, March 29) Embryology Animal Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Animal_Development

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G