2016 Group Project 4

From Embryology
Revision as of 12:41, 10 September 2016 by Z5020117 (talk | contribs)
2016 Student Projects 
Signalling: 1 Wnt | 2 Notch | 3 FGF Receptor | 4 Hedgehog | 5 T-box | 6 TGF-Beta
2016 Group Project Topic - Signaling in Development

OK you are now in a group, add a topic with your student signature to the group page.

This page is an undergraduate science embryology student project and may contain inaccuracies in either descriptions or acknowledgements.
Group Assessment Criteria  
Mark Hill.jpg Science Student Projects
  1. The key points relating to the topic that your group allocated are clearly described.
  2. The choice of content, headings and sub-headings, diagrams, tables, graphs show a good understanding of the topic area.
  3. Content is correctly cited and referenced.
  4. The wiki has an element of teaching at a peer level using the student's own innovative diagrams, tables or figures and/or using interesting examples or explanations.
  5. Evidence of significant research relating to basic and applied sciences that goes beyond the formal teaching activities.
  6. Relates the topic and content of the Wiki entry to learning aims of embryology.
  7. Clearly reflects on editing/feedback from group peers and articulates how the Wiki could be improved (or not) based on peer comments/feedback. Demonstrates an ability to review own work when criticised in an open edited wiki format. Reflects on what was learned from the process of editing a peer's wiki.
  8. Evaluates own performance and that of group peers to give a rounded summary of this wiki process in terms of group effort and achievement.
  9. The content of the wiki should demonstrate to the reader that your group has researched adequately on this topic and covered the key areas necessary to inform your peers in their learning.
  10. Develops and edits the wiki entries in accordance with the above guidelines.
More Information on Assessment Criteria | Science Student Projects

<pubmed>23719536</pubmed>

Hedgehog signalling pathway

History

Function

Neural development

Organogenesis

Mechanism

Animal models

Blockage of Shh Signalling in Forebrain Neuroectoderm in Chick Embryos

Shh knockout mice

Drosophila melanogaster

Clinical significance

Human disease

Holoprosencephaly

Cleft Lip and Palate

Diagnosis

Current research

References