2014 Group Project 9: Difference between revisions

From Embryology
Line 145: Line 145:


====True Hermaphroditism====
====True Hermaphroditism====
True hermaphroditism also known as ovo-testicular disorder of sexual differentiation or ‘true gonadal intersex’, is a rare intersex abnormality in which an individual has both male and female genitalia. The gonads are asymmetrical with ovarian and testicular differentiation combines as ovo-testis or separately on either side <ref><pubmed>3418019</pubmed></ref>. The individual may have XX, XY or both chromosome types.  Treatment involves reconstructive surgery upon each individual case having to choose a gender, this decision has short and long-term consequences. Each case is determined differently as there are many factors to consider when choosing the gender identity. This comprises a long process providing parents with support and guidance in making their decision.  
True hermaphroditism also known as ovo-testicular disorder of sexual differentiation or ‘true gonadal intersex’, is a rare intersex abnormality in which an individual has both male and female genitalia. The gonads are asymmetrical with ovarian and testicular differentiation combines as ovo-testis or separately on either side <ref><pubmed>3418019</pubmed></ref>. The individual may have XX, XY or both chromosome types.  Treatment involves reconstructive surgery upon each individual case having to choose a gender, this decision has short and long-term consequences. Each case is determined differently as there are many factors to consider when choosing the gender identity. This comprises a long process providing parents with support and guidance in making their decision <ref http://www.nlm.nih.gov/medlineplus/ency/article/001669.htm</ref>.





Revision as of 22:01, 21 October 2014

2014 Student Projects
2014 Student Projects: Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8
The Group assessment for 2014 will be an online project on Fetal Development of a specific System.

This page is an undergraduate science embryology student and may contain inaccuracies in either description or acknowledgements.

Genital

Historic Finding

Female Genital Development

Female genital system development has been a subject of many historical literatures dating to the 17th century. Certain research articles aimed to focus on the female genital system as a whole, whereas others delved into specific areas such as the epithelium or specific organs such as the vagina. With the development of technology and research skills over the years, the understanding of the female genital system has improved substantially from the understanding of origin, the structure of the organs and even the nomenclature of the system. [1] [2]

Majority of the findings lead to a proposal of a theory of that organ or the system, with some of these theories still accepted today and others disproven. The research themes and theories found in historical literature can be divided into three groups. [1]

  1. The origin of the vagina and inner genital organs is the Mullerian duct.
  2. Part of the Wolffian ducts give rise to some or all of the vaginal epithelium.
  3. Contribution of the vagina is from the epithelium of the urogenital sinus.

Prior to the discovery of the importance of the Mullerian ducts, the origin of the vagina was considered to be the urogenital sinus. It was not until later that century, roughly in 1864 that the Mullerian ducts and their fusion pattern and foetal development was introduced. This realisation was later supported by many academics in their published work, particularly in the early 1900s (1912, 1927, 1930, and 1939). [1]

Development of Mullerian Ducts into mature female organs

According to the works of the early embryologists Thiersch, Banks, Felix, Bloomfield & Frazer, Hunter and von Lippmann, all who published within the timeframe of 1868 to 1939, concluded that the mullerian (paramesonephric) ducts, found laterally to the wolffian ducts, are the original structures of the female reproductive system. Female sexual organs (the fallopian tubes, uterus and vagina) originate from the mullerian ducts, which differentiates within the foetal developmental phase. Initially the foetus contains two mullerian ducts, however by the ninth week, fusion of the lower portion of the ducts is complete, creating the fundamental structure of the uterus and the vagina, however the these two organs are not continuous with the vagina being solid. The non-fused upper part of the ducts emerge into the fallopian tubes. It is not until the fourth and fifth month of development that the uterus becomes continuous with the vagina, with both organs developing a hollow lumen. The muscular layers of the uterus is also present by this stage. The cervix begins to form within the fifth month in between the continuous vagina and uterus. Also within the same month, the formation of the hymen occurs. The hymen is described as a pouting vertical slit and represents the remains of the mullerian eminence. [3] [4]


Male Genital Development

The Prostate

The mechanism behind prostate foetal development and modern understanding has been continuously reshaping since the 16th century. Throughout this period, various anatomical classifications have been proposed via dissection procedures, hormone responses and histological methods, attributing to the current understanding of prostate development. The rate of research into the structure and development of the prostate steeply increased in the 20th century, where each decade saw an improvement of the understanding of the development of the gland. [5] [6]

Date Description
1543 Andreas Vesalius published the first illustrations of the prostate gland.
1674 Gerard Blasius introduced the gland as a structure encircling the neck of the bladder.
1901 Pallin thoroughly investigated the prostate gland and its origin.
1912 Oswald S Lowsley constructed the first detailed drawing of the anatomy of the prostate by dissecting and researching on a 13-week old foetus, 30-week old foetus, and one at full-term. He proposed the concept of separating the gland into five lobes, and that the prostate originates from the urogenital sinus.
1920 Johnson reshaped the anatomical illustration after being unable to replicate Lowsley’s results. He preserved the use of the term ‘lobe’ in describing the prostatic divisions.
1954 Three concentric regions became the accepted categorising model of the prostate, as proposed by Franks.
1983 McNeal organised the gland into prostatic zones, rejecting the lobe and concentric regions theory.

Testicular descent

Testicular descent begins during the early foetal period, 8-10 weeks, and takes approximately 5 weeks for the testes to reach the inguinal region. The second phase of descent, when the testes reach the scrotum, is not complete until the 35th to 40th week. The mechanisms behind testicular descent has been debated for at least two centuries, beginning with anatomical dissections during the eighteenth and nineteenth centuries, then enhancing with endocrinological discoveries during the twentieth century.

The Scottish surgeon and anatomist, John Hunter, first documented the gubernaculum and the location of the male foetal testicles in the late 1700s. In his research, Hunter claimed that descent occurred during the 8th foetal month and was directed by the gubernaculum testis, a ligament attaching the foetal testis to the abdominal wall and the scrotum. He further proposed that the processus vaginalis closes subsequent to the decent of the testis. This is contrary to the findings of Albrecht von Haller who illustrated that foetal testis is intra-abdominal and the processus vaginalis is not closed.

Hunter described the gubernaculum as a vascular and fibrous foetal structure covered by the cremaster muscle, a muscle of unknown function. This led to more research focused on the cremaster muscle. In 1777, Palletta questioned the importance of the cremaster muscle because of its under developed state during the time of descent. This however did not stop Pancera, who in the following year, considered the muscle as the key factor in the process. Pancera’s conclusion was confirmed by Lobsetin in 1801.

The second phase of testicular descent to the scrotum has also seen many theories. Lobsetin suggested that this phase is complete by birth, influenced by respiration and the increased abdominal pressure that occurs at birth. The concept of increased abdominal pressure was reiterated by Robin in 1849, however he also introduced the theory that descent into the scrotum occurs due to the weight of the testes and muscles associated. Both Lobsetin and Robin’s work was refuted by Weber who highlighted the processus vaginalis, an embryonic pouch of peritoneum, as the main force of the migration.

In 1841, Curling detailed the structure of the gubernaculum and the cremaster muscle. Curling believed that during the foetal period, the cremaster muscle was important in descending the testis, however subsequent to the descent, the fibres of the muscle everted resulting in it’s new functions of elevating, supporting and compressing of the developed testis. The eversion of the muscle fibres were denied by Cleland, who in 1856 performed dissections on foetal specimens ranging from 5-6 gestational months old. In his experiment he found that the foetal gubernaculum did not directly attach the testicle to the scrotum and was only present in the inguinal wall. In terms of the testicular descent process, Cleland presented a similar theory as Weber, in terms that the cremaster was not the primary source of descent, second to the gubernaculum, that led the descent of the testes. In 1888, Lockwood published a completely unique theory claiming that the testes remained stationary and that it was in fact the surrounding structures that developed, resulting in the changing of the testicular location. Lockwood’s hypothesis was disagreed on by many anatomists and embryologists.

With the introduction of endocrinology and hormonal testing, the previous theories were tested on a cellular basis. Male androgen, controlled by the pituitary gland, was the first hormonal theory believed to influence testicular descent. It has been evidently proven that androgens are important in the descent however it is unclear if it is important in both stages. It is currently accepted that testosterone influences the gubernaculum during the second phase in which the testes reach the scrotum, however the exact method is currently debatable. The first phase theories are under high scrutiny, with theories ranging from the development of the gubernaculum and hormones such as the Mullerian inhibiting substance. [4]

References

4. Martyn P. L. Williams, John M. Huston The history of ideas about testicular descent. Pediatric Surgery International: 1991, 6(3):180-184 The history of ideas about testicular descent

<pubmed>18462432</pubmed> <pubmed>17232227</pubmed>


Abnormalities

We discuss both male and female genital abnormalities internally or externally, that may occur during fetal development. The abnormalities have been identified as disorders of sex differentiation(DSD), associated with congenital conditions in the atypical development of chromosomal, gonadal or phenotypical sex [7], [8]. The content will cover most common abnormalities and then also the rare cases. Most genital abnormalities have a high risk in affecting fertility of both sexes. Currently there are a variety of methods applied to ensure that infertility can be treated and this will be mentioned.

FEMALE

Abnormalities of the Uterus and Vagina

Abnormalities of the Uterus and vagina are cause by inadequate fusion or regression of Mullerian duct may result as the following;

  • double uterus and double vagina
  • double uterus
  • bicornate uterus
  • septated uterus
  • unicornate uterus
  • cervical atresia

Mullerian agenesis

Mullerian agenesis also known as ‘Mayer-Rokitansky-Kuster-Hauser’ syndrome, vaginal agenesis or Mullerian aplasia, is presented in the absence of the uterus or vagina or in some case even both. This is due to the unsuccessful development of the Mullerian ducts which then causes certain parts of the reproductive system to be underdeveloped. It is present in 1 of 4000-10 000 women. This condition also uses dilation therapy and following the neovaginal approach with the reconstruction of the vagina in its treatment strategies [9].

Vaginal agenesis

Vaginal agenesis is a rare condition involving the underdevelopment of the vagina. It is commonly cause by a combination of Rokitansky (Mullerian agenesis) and androgen insensitivity syndromes [10]. To ensure effectiveness in treatment, it’s advised after or during adolescence, procedures consist of vaginal dilation shown a success rate of 80% and low risks. In cases where such methods are ineffective then vaginal reconstruction is implemented as a final option for patients [11].

Turners syndrome

A chromosomal disorder occurring among women due to the absence of the whole or part of the sex chromosome (X). The condition is characterized by short stature, cardiovascular malformations, amenorrhea and estrogen insufficiency [12]. It is prevalent in 1 of 2000 live births among females [13]. Management of the syndrome depends on the extent of the condition the individual will present. Therefore treatment will vary, for short stature biosynthetic growth hormone is utalised in growth hormone. The most common cardiac malformations are bicuspid aortic valve, coarctation of the aorta and aortic stenosis that are all surgically treated. Generally patients are advised to see pediatricians, endocrinologists and many other clinicians depending on the severity of the condition, to discuss strategies to manage the syndrome [14].

Swyer Syndrome

Swyer syndrome (46 XY, gonadal dysgenesis) is a type of hypogonadism disorder in which an individual from birth is phenotypically female with unambiguous genital form and normal mullerian structures. The condition is usually observed during adolescence since the gonads have no hormonal or reproductive function amenorrhea occurs and puberty is delayed [15]. It has been found that 10-20% of women with this condition have a deletion of the SRY gene in the DNA-binding site. In other cases the SRY gene is normal however mutations may present in different determining factors. Managing the syndrome consists of hormone replacement therapy (including estrogen and progesterone), to ensure bone mineral density is maintained and uterine size and shape is improved [16].

Also related include;

Polycystic Ovarian Syndrome

The Female reproductive system showing a normal ovary compared to one that is affected by Polycystic Ovarian Syndrome

A metabolic endocrine disorder with an immense variety of phenotypes presented. The disorder has an imbalance in female sex hormones and a resistance to insulin. Most importantly it affects the female reproductive system, with issues associated with infertility and menstrual irregularities. The treatments implemented depend on the clinical manifestations each patient develops. Insulin-sensitizing agents are among the treatments used these include Metformin, Rosiglitazone and Piglitazone all have shown to be effective [17].

MALE

Cryptorchidism

The sites where Cryptorchidism may occur

Involves the absence of both or single testis to descend into the scrotum, the testes can be ectopic, incompletely descended, absent or atrophic. It is possible that sometimes the cryptrodism may be spontaneously corrected by 3 months of age. The abnormality can occur as a result of a number of factors including maternal, genetic or environmental [18]. The descendence of testis occur in two stages; in the first stage insulin like hormone attaches the testis to the inguinal ring this is through gubernaculum development. Following is the inguinoscrotal stage that requires testicular androgens [19].

Treatment includes human chorionic gonadotropin or gonadotroping-releasing hormones, these are not the most beneficial or advised approach. Surgical repair is intended to apply the safest and least invasive methods, focusing on repositioning the undescended testicle/s to their normal position in the scrotum. Such surgeries are recommended in early life and have proved to be most effective, with 75%+ success. The therapy used to relocate the testis into the scrotum is known as ‘Orchiopexy’, others include one-stage Fowler Stephens and two-stage FS Orchidopecy. However there are concerns with long-term effects which include infertility and testicular cancer later in life as a result of the procedure [20].

Hypospadias

In males the most common congenital malformation of the external genitalia is hypospadias, it’s also the second most common developmental disorder. It occurs due to the midline fusion of the male urethra, as a result the urethral meatus is misplaced. There are several sites where this abnormality may occur: granular, penile, penoscrotal, scrotal and perineal. [21] Its believed that genetic factors contribute to the presence of the disorder, however endocrine and environmental factors are also of significance. [22] Treatment The surgical methods currently used to treat distal hypospadias, include tabularized incised plate and meatal advancement and glansplasty intergrated repair. For proximal forms two staged procedures are employed. [23]

Klinefelter

Klinefelter is a genetic disorder caused by the addition of an X chromosome among males (47, XXY, XXY,XXXXY, XXYY), due to the inability of the extra chromosomes to detach throughout meiosis. It is believed to have an origin from either parent. The abnormality has a wide range of phenotypic variations, that typically include infertility, small testes, gynecomastia and hypergonadotropic hypogonadism [24]. An early diagnosis is important in order for treatment to be commenced right away. The treatment implemented involves Testosterone replacement therapy, which assists in easing some of the features, although infertility is still an issue. The fertility options consist of IVF, where males undergo testicular sperm extraction, cryopreservation of sperm containing semen or testicular tissue during adolescence [25].

Peyronie’s Disease

The acquired disease occurs due to fibrotic plaque formations in the tunica albuginea of the penis. This leads to sexual dysfunction, a loss in penile flexibility, shortening and penile malformations [26]. The penis is curved upward as a result of the plaque structure. Adult males are at risk of the condition where about 3.2-8.9% are affected among the population [27]. Strategies applied vary in the extent of the deformities; some procedures involve grafting in the lengthening of the penis, plaque removal and prosthesis implantation in erectile dysfunction [28].

BOTH

Congenital adrenal hyperplasia

The condition is caused by a deficiency in 21-Hydroxylase, a genetic disorder of steroidogenesis. Occurs due to mutations in genes that encode enzymes that take part in adrenal steroid synthesis therefore there is a loss of function [29]. The deficiency is from mutations in CYP21A2, thus the clinical characteristics may vary. In females it results in the ambiguity of the female genitalia, fused labia majora, larger clitoris and common urogenital sinus [30]. Steroid 21-OHD deficiency is examined in-utero and then prenatal treatment with dexamethasone is administered. This is a safe method used and decreases the risk of ambiguous genitalia in females [31]. Among males symptoms aren’t present at birth a side from possible penile enlargement and slight hyperpigmentation [32]. Generally male patients also require the administration of glucocorticoid and mineralocorticoid therapies [33].

Hydrocele

Hydrocele occurs when the space between parietal and visceral layers of tunica vaginalis accumulates an abnormal amount of serous fluid. Normally caused by an imbalance in the processes of production and reabsorption of fluid or varicocelectomy. To manage the condition treatments focus on ensuring draining any excess fluid and inhibiting reaccumulation. Techniques used involve sclerotherapy and hydrocelectomy [34]. In females it is a very rare condition, occurs in the ‘Canal of Nuck’, a part of the inguinal canal containing a section of the processus vaginalis. A swelling is present on the labia major or inguinal ring. Techniques applied to treat the condition in females involve ligation of the processus vaginalis neck and the hydrocele is surgically resected [35].

True Hermaphroditism

True hermaphroditism also known as ovo-testicular disorder of sexual differentiation or ‘true gonadal intersex’, is a rare intersex abnormality in which an individual has both male and female genitalia. The gonads are asymmetrical with ovarian and testicular differentiation combines as ovo-testis or separately on either side [36]. The individual may have XX, XY or both chromosome types. Treatment involves reconstructive surgery upon each individual case having to choose a gender, this decision has short and long-term consequences. Each case is determined differently as there are many factors to consider when choosing the gender identity. This comprises a long process providing parents with support and guidance in making their decision Cite error: Invalid <ref> tag; invalid names, e.g. too many. It occurs during embryonic development at a time in which hypothalamic neurons (gonadotropin-releasing hormones) are unable to migrate into the hypothalamus. Currently there are no available treatments for the olfactory deficit, however among males hormone replacement therapy is implemented with human chorionic gonadotropin, human menopause gonnadotropin and testosterone undecanoate [37]. In females treatment focuses on maintaining and inducing secondary sex characteristics [38].

Hypogonadotropic hypogonadism

The condition results in a failure to secrete gonadotropin such as luteinizing (LH) and follicular stimulating hormones (FSH), which then reduce the gonadotropin levels [39] . This indicates possible issues with the hypothalamus or the pituitary gland. It may occur in conjunction with Kallmann’s syndrome or a decreased gonadotropin-releasing hormone (GnRH). In males treatment methods depend on how the condition is presented and whether it’s associated with another abnormality. Generally the therapies may require testosterone in cases with micropenis and to generate spermatogenesis gonadotropin replacement is utalised. Hypogonadotropic Hypogonadism is rare among females, however it may be presented thus similar treatment options are available. Treatments consist of gonadotropins administration of FSH and LH, to ensure successful occyte formation [40].

References

  1. 1.0 1.1 1.2 <pubmed>13475148</pubmed>
  2. <pubmed>17232984</pubmed>
  3. <pubmed>17232227</pubmed>
  4. <pubmed>13230915</pubmed>
  5. <pubmed>18462432</pubmed>
  6. <pubmed>13948442</pubmed>
  7. <pubmed>16882788</pubmed>
  8. <pubmed>25248670</pubmed>
  9. <pubmed>23635766</pubmed>
  10. <pubmed>21872517</pubmed>
  11. <pubmed>17995494</pubmed>
  12. <pubmed>16849410</pubmed>
  13. <pubmed>2037286</pubmed>
  14. <pubmed>16714725</pubmed>
  15. <pubmed>3182960</pubmed>
  16. <pubmed>18410658</pubmed>
  17. <pubmed>23435473</pubmed>
  18. <pubmed>24683948</pubmed>
  19. <pubmed>18032558</pubmed>
  20. <pubmed>24857650</pubmed>
  21. <pubmed>16006950</pubmed>
  22. <pubmed>24936573</pubmed>
  23. <pubmed>25023236</pubmed>
  24. <pubmed>16342850</pubmed>
  25. <pubmed>24563893</pubmed>
  26. <pubmed>20497306</pubmed>
  27. <pubmed>3826933</pubmed>
  28. <pubmed>23435473</pubmed>
  29. <pubmed>18844712</pubmed>
  30. <pubmed>15964450</pubmed>
  31. <pubmed>20392211</pubmed>
  32. <pubmed>15964450</pubmed>
  33. <pubmed>18446680</pubmed>
  34. <pubmed>20548330</pubmed>
  35. <pubmed>16416273</pubmed>
  36. <pubmed>3418019</pubmed>
  37. <pubmed>24432625</pubmed>
  38. <pubmed>23368665</pubmed>
  39. http://www.ncbi.nlm.nih.gov/books/NBK1334/
  40. <pubmed>17260221</pubmed>