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Tissue homeostasis




Tissue renewal in higher vertebrates




Stem cells divide to self renew and
to produce terminally differentiated cell types
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Figure 20-35 Essential Cell Biology 3/e (© Garland Science 2010)



Stem cells potential

Totipotency:
capacity to generate all cell types within the body + extraembryonic tissue

Pluripotency:
capacity to generate all cell types within the body

Multipotency:
capacity to give rise to more than 1 cell type

Unipotent stem cell:
tissue precursor cells, capacity to give rise to one cell type only



Stem cells potential
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Adult stem cells
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Stem cell niche:
Keeps stem cells in an undifferentiated state
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Epidermal Stem Cell Niches




Basal Epidermal Stem Cells

life span basal keratinocyte: 1 month:

dead flattened cells
packed with keratin
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Keratinocytes of the interfollicular epidermis



The Hair Follicle Bulge Stem Cell Niche
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Epidermal bulge stem cells: hair follicle keratinocytes
Melanocyte bulge stem cells: melanocytes



The Intestinal Crypts Stem Cell Niche

Descendants of Crypt Base Columnar Stem Cells live up to 48 hours
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The Haemopoietic Stem Cell Niche
approximately 10""-10'? new blood cells are produced daily
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Figure 5.1. Hematopoietic Stem Cell Differentiation (2001 Terese Winslow, Lydia Kibiuk)



Subventricular and Subgranular Zone

adult neurogenesis

SGZ

radial glial cells (type B astrocyte)
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Seminiferous Tubules
Spermatogenesis: 2 months life span




Regulation of Stem Cells

Should | stay quiescent?
Should | die?
Should | proliferate?
Should | self-renew?
Should | generate transit amplifying cells?

Should | generate differentiating daughter cells?



Stem cell niche:
Keeps stem cells in an undifferentiated state

A Cellular niche
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Regulation of Stem Cells
Signalling pathways
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Regulation of Stem Cells
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Regulation of Stem Cells

The Hippo Pathway




What happens if cell renewal regulation goes wrong?




Mutations in Wnt pathway result in Cancer
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Mutations in Hedgehog pathway result in cancer
Basal Cell Carcinoma
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Mutations in Notch pathway result in cancer
T cell acute lymphoblastic leukemia
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Mutations in Hippo pathway result in cancer
skin cancer

hyperproliferation



Regenerative medicine
the clinical application of stem cells

"process of replacing or regenerating human cells, tissues or organs
to restore or establish normal function”

Potential uses of

Stem cells
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Stem Cell Sources for Regenerative Medicine

Blastocyst
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Embryonal Carcinoma Cells are pluripotent

Pluripotent
In vitro culture and expansion
Genetic abnormalities



Embryonic Stem Cells are pluripotent

1981 — Martin Evans, Matthew Kaufman and Gail Martin

Pluripotent
No genetic abnormalities
In vitro culture and expansion
Ethical issues



Adult stem cells

“An undifferentiated cell, found among differentiated cells in a tissue or organ
that can renew itself and can differentiate to yield some or all of
the major specialized cell types of the tissue or organ”

Bone marrow stem cells: haematopoietic stem cells
Neural stem cells

Intestinal stem cells

Skin stem cells

Umbilical cord stem cells: haematopoietic stem cells

No ethical issues
Restricted plasticity
Limited quantities
Hard to identify



Somatic Cell Nuclear Transfer
John Gurdon, 1958

The developmental potential of nuclei of differentiated cells




Somatic Cell Nuclear Transfer

“mature, differentiated cells
can be reprogrammed
to become pluripotent”

Pluripotent (totipotent?)
Low success rate
Genetic/phenotypic abnormalities
Ethical issues




Reproductive/Therapeutic Cloning

- 1 R Pluripotent (totipotent?)
Low success rate
Genetic/phenotypic abnormalities
Ethical issues



Nuclear Reprogramming
Induced pluripotency (iPS), Yamanaka, 2006

“mature, differentiated cells can be reprogrammed to become pluripotent”
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Good success rates
No need for human embryos
Genetic/phenotypic abnormalities?



COMPARISON OF THE DIFFERENT SOURCES OF STEM CELLS

Stem Cell Sources

Embryonic vs Adult Stem Cells
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The Future of Regenerative Medicine



Future of Regenerative Medicine

now we can direct differentiation?
Now we can cure diseased cells?

now we can repair mutations in cells?



Future of Regenerative Medicine

Directed differentiation of pluripotent stem cells

SnapShot:
Directed Differentiation of ESCs and iPSCs
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Stem Cell Therapy

Macular Degeneration

Normal
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Masayo Takahashi (RIKEN)

iPS on skin cells of patient
Differentiate into retinal pigment epithelium cells
Grow in sheets to transplant in retina

(Surgery on 12 September 2014)



Future of Regenerative Medicine

How can we cure disease?

Disease Modeling and Drug discovery



Future of Regenerative Medicine

Disease Modeling of Spinal Muscular Atrophy

Svensden Lab, 2009

iPS on skin fibroblasts of SMA patient
Differentiate iPS cells into neurons, astrocytes and motor neurons
Selective death of motor neurons after few weeks of culture

Response to drug to increase SMN1 levels in iISMA-motor neurons

http://www.nature.com/nature/journal/v457/n7227/full/nature07677.html




Future of Regenerative Medicine

How can we repair mutations in cells?

Gene Therapy:
CRISPR/CAS9 genome editing




CRISPR/Cas9 Genome Engineering

(Clustered Regularly Interspaced Short Palindromic Repeats)
Guide RNA and Cas9

Matching genomic
sequence

Guide RNA

Genomic DNA , - — Cas9

http://www.youtube.com/watch?v=0dRT7slyGhs



CRISPR/Cas9 Genome engineering

Repair

Non-homologous end joining: Homology-directed repair:
Small inser.tion/d_eletion Provide donor template with homology arms
gene disruption Gene mutation/correction/addition

(and occasional errors) (Cas9 D10A mutant)




CRISPR/Cas9 Genome engineering

Applications in Stem Cells

CRISPR/CAS9



CRISPR/Cas9 Genome Engineering
Repair of Cystic Fibrosis Gene CFTR

(cystic fibrosis transmembrane conductor receptor)

Lgr5+ intestinal stem cells -> organoids
In vitro assay in intestinal organoids:

Forskolin -> CFTR -> expansion
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The Future of Regenerative Medicine
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