

Never Stand Still

Stem Cells

Medicine School of Medical Sciences

Prof. Edna Hardeman (e.hardeman@unsw.edu.au) Neuromuscular and Regenerative Medicine Unit School of Medical Sciences UNSW

Mesenchymal stem cells Photo courtesy of Mesoblast

Stem Cells

At the end of this lecture you should be able to:

- Define what is meant by the term 'stem cell'
- Understand the difference between embryonic and adult stem cells
- Know the landmark discoveries in stem cell research
- Understand the 'decision-making steps' of a stem cell
- Understand where stem cells reside the stem cell niche
- Understand the advances in biomedical research due to stem cells
- Understand the therapeutic promise and limitations of stem cells

Stem Cells – The Definition

Stem cell = An <u>unspecialised cell</u> characterised by the ability to <u>self-renew</u> by mitosis and the capacity to give rise to various <u>specialised/differentiated</u> <u>cell</u> types.

Evidence for the Existence of Stem Cells *Regeneration in lower organisms*

Crayfish claw, leg

Earthworms body

Tadpoles tail

Newts

leg

<u>www.youtube.com/watch?v=4exOh6s</u> <u>wPp8</u>

Planaria (flatworm) whole organism

<u>http://www.youtube.com/watch?v=v</u> <u>XN_5SPBPtM</u>

Indirect Evidence of the Existence of Stem Cells Regeneration of adult tissues in humans

LIVER – regrows 75%

BLOOD – always renewing

BONE – repairs breaks

SKIN – always renewing

MUSCLE – repairs damage [crush tears, cuts, genetic diseases (dystrophies)]

Direct Evidence of the Existence of Stem Cells Regeneration of blood cells in humans

1960s - Till & McCulloch (Canada)

- 'Fathers of stem cell research'
- Gave lethal doses of radiation to mice that killed bone marrow
- Rescued with bone marrow transplantation
- Discovered single cell from bone marrow → copy itself (self-renewal) → amplify numbers (transit-amplifying) → make all blood cell types
- Discovered adult blood stem cells

Stem Cells – The Definition

Stem cell = An <u>unspecialised cell</u> characterised by the ability to <u>self-renew</u> by mitosis and the capacity to give rise to various <u>specialised/differentiated</u> cell types.

Stem Cells – Different types based on hierarchy of 'potential'

Stem Cells – Definitions of different types based on hierarchy of 'potential'

Stem cell = An <u>unspecialised cell</u> characterised by the ability to <u>self-renew</u> by mitosis and the capacity to give rise to various <u>specialised/differentiated cell</u> types.

- Totipotent stem cell = can give rise to all of the >200 cell types within the body + extraembryonic tissue (e.g. fertilised egg, embryo within the first couple of cell divisions)
- Pluripotent stem cell = can give rise to all of the >200 cell types within the body (e.g. inner mass cells = embryonic stem cells; induced pluripotent stem cells = iPS cells)
- Multipotent stem cell = can give rise to more than one cell type (e.g. haematopoietic stem cells → all adult blood cell types)
- Uni-potent stem cell (tissue precursor) = can only give rise to one cell type (e.g. muscle stem cell or 'satellite' cell)

Stem Cells – The Decisions

Should I remain in hibernation? = Quiescence

```
Should I die? = Apoptosis
```

Should I activate? = Proliferation

Should I self-renew? = Re-enter Quiescence

Should I divide enough times to generate a tissue? = Transit-amplification

Should I become a tissue/organ? = Differentiation

Stem Cells – The Decisions

Should I remain in hibernation? = Quiescence

```
Should I die? = Apoptosis
```

Should I activate? = Proliferation

Should I self-renew? = Re-enter Quiescence

Should I divide enough times to generate a tissue? = Transit-amplification

Should I become a tissue/organ? = Differentiation

These decisions are made in the stem cell niche.

Signalling Pathways within Cells

- Signalling pathways exist within cells to coordinate specific cellular activities, e.g. cell division.
- Signalling between cells typically involves one cell providing a 'ligand' that interacts with a 'receptor' on the surface of the receiving cell.
- 'Ligand-receptor' interaction leads to a cascade of events in the receiving cell with a specific outcome, e.g. cell division.

Where are stem cells found in the body? The Stem Cell Niche

- Stem cells do not live in isolation; they live within a community of cells.
- There are a variety of cells in the local environment of a stem cell that comprise the 'stem cell niche'.
- These cells 'communicate' with (signal to) the stem to make the right decision.

The Stem Cell Niche Prominent Signalling Pathways

- Key signalling pathways are involved in the decisionmaking steps in the stem cell niche.
- The same pathway can have different effects on stem cells in different tissues/organs.
- These signalling pathways are characterised by short distance communication, i.e. support cell that provides ligand is relatively close to the stem cell with its receptors.

Cell Fate Decision-Making in the Intestinal Epithelial

The Stem Cell Niche Prominent Signalling Pathways

- Key signalling pathways are involved in the decision making steps in the stem cell niche.
- The same pathway can have different effects on stem cells in different tissues/organs.
- These signalling pathways are characterised by short distance communication, i.e. support cell that provides ligand is relatively close to the stem cell with its receptors.

Four stem cell niches where the same signalling pathways have different effects

Wnt Signalling

- WNT LIGAND WNT messenger is degraded Can't travel to nucleus Differential stem cell fate + WNT LIGAND WNT messenger is stabilised Travels to the nucleus Similar stem cell fate = self-renewal

Notch Signalling

- NOTCH LIGAND NOTCH remains in the membrane Can't travel to nucleus Differential stem cell fate + NOTCH LIGAND NOTCH is internalised Travels to nucleus Differential stem cell fate

Tgf-beta Signalling

- TGF-BETA LIGAND TGF-BETA messengers inhibited Can't travel to nucleus Differential stem cell fate + TGF-BETA LIGAND TGF-BETA messengers are activated Travel to nucleus

Differential stem cell fate

Shh (sonic hedgehog) Signalling

- Shh LIGAND Shh messengers inhibited Can't travel to nucleus Differential stem cell fate + Shh LIGAND Shh messengers are activated Travel to nucleus Similar stem cell fate

Hierarchy of Stem Cells – Progression of step-wise decisions that restrict genetic potential

How do Cells Lose Their Genetic Potential?

- 1. Altered gene expression (most common)
 - only those genes specific for a tissue/organ are expressed
 - specific transcription factors are expressed
- 2. Terminal differentiation
 - loss of cell division capacity (e.g. muscle, neurons)
- 3. Gross DNA rearrangement or loss (rare)
 - immunoglobulin genes arise out of DNA splicing
 - mammalian red blood cells lose their nucleus

Stem Cell Decision-Making Reversal *Reprogramming*

1958 – John Gurdon (UK)

 Cloned a frog – enucleated frog egg + nucleus from tadpole intestine → frog

Stem Cell Decision-Making Reversal *Reprogramming*

2006 – Shinya Yamanaka (Japan)

 Turned an adult cell into an embryonic stem cell – adult cell + Yamanaka factors (Oct3/4, Sox2, c-Myc, Klf4) → embryonic stem cell

2012 Nobel Prize in Medicine *"for the discovery that mature cells can be reprogrammed to become pluripotent"*

The Problems with Reprogramming

- Clones are relatively difficult to generate.
- Clones have shorter lives.
- Clones may have compromised 'fitness'.
- DNA of iPS cells may retain modifications obtained during development.

DNA in adult cells may retain a 'memory' of developmental history = may retain a 'memory' of age. May accumulate mutations that are difficult to erase.

Stem Cells & Biomedical Research & Regenerative Medicine

Embryonic Stem Cells & Biomedical Research Key Discoveries

1981 – Martin Evans & Matthew Kaufman (UK) Gail Martin (USA)

• First isolated mouse embryonic stem (ES) cells from the inner cell mass of cultured blastocysts.

1989 – Mario Capecchi (USA), Oliver Smithies (USA), Martin Evans(UK)

 Developed the technology to genetically manipulate mouse ES cells – remove genes (KNOCKOUT MICE), add mutated genes (KNOCK-IN MICE) → make mouse models of human genetic diseases

2007 Nobel Prize in Medicine

"for their discoveries of principles for introducing specific gene modifications in mice by the use of embryonic stem cells"

How to Make a KO/K-In Mouse

Sources of Stem Cells for Research & Therapy *Pluripotent – IVF-derived Embryonic Stem Cells*

Sources of Stem Cells for Research & Therapy *Pluripotent – Cloning-derived Embryonic Stem Cells*

Sources of Stem Cells for Research & Therapy *Pluripotent – Induced Pluripotent Stem Cells*

Sources of Stem Cells Verification Markers of Pluripotent Stem Cells

Oct4 = homeobox transcription factor; involved in embryonic patterning; critical for self-renewal

SOX2 = transcription factor; interacts with Oct4 to regulate cell cycle genes

2011 Abcam

2011 Abcam

SSEA4 = carbohydrate attached to a lipid (glycolipid) found on early cleavage stage embryos

Tra-1-60 = keratin sulfate; sulfated structural carbohydrate

Adult Stem Cells – Isolate from tissue source

Kosinski C et al. PNAS 2007;104:15418-15423

Stem Cells – The Sources

	COMPARISON OF T	HE DIFFERENT SOURCES	OF STEM CELLS	
	Embryonic Stem Cells		Adult Stem Cells	iPS Cells
Attributes	In Vitro Fertilization • can produce all cell types • relatively easy to identify, isolate, maintain, and grow in the laboratory • large source of "excess" blastocysts from IVF clinics	Nuclear Transfer • can produce all cell types • relatively easy to identify, isolate, maintain, and grow in the laboratory • stem cells may be genetically matched to patient	Adult Tissues e. demonstrated success in some treatments e. stem cells may be genetically matched to patient	Reprogramming of Somatic Cell can produce all cell types relatively easy to generate, maintain and grow in the laboratory stem cells may be genetically matched to patient
Limitations	 Ilmited number of cell lines available for federally funded research risk of creating teratomas (tumors) from implanting undifferentiated stem cells 	 not yet achieved with human cells risk of creating teratomas (tumors) from implanting undifferentiated stem cells 	 produce limited number of cell types not found in all tissues difficult to Identify, isolate, maintain, and grow in the laboratory 	 risk of creating teratomas if these are indeed true ES cells may retain the age of the parent cell
Ethical Concerns	 destruction of human blastocysts donation of blastocysts requires informed consent 	 destruction of human blastocysts donation of eggs requires informed consent concern about misapplication for reproductive cloning 	 no major ethical concerns have been raised 	 risk of creating teratomas if these are indeed true ES cells may retain the age of the parent cell

http://thescienceofstemcells.com/home.html

Stem Cells – The Applications

Potential uses of Stem cells

Just for Fun - Enhanced Muscle Stem Cell Engraftment Strategy

- Goal = replace defective muscle stem cells that carry a disease mutation with healthy stem cells
- Problem = need to get rid of endogenous stem cells → competition for the niche

STRATEGY

- Induce regeneration in skeletal muscle through injury – it has the capacity to regenerate via its adult muscle cells
- Kill off proliferating endogenous stem cells with chemotherapy drugs
- Transplant genetically engineered stem cells that are resistant to chemotherapy

Rebuilding a muscle with chemotherapy drug-resistant adult muscle stem cells

