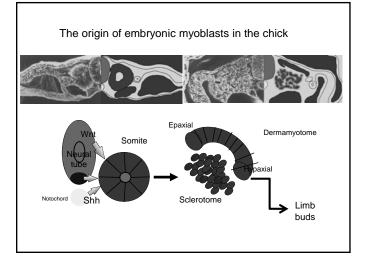


Properties of Fiber Ty				_
	Characteristic	F	ast fibers IIx IIa	Slow fibers Type I
	V (speed of shortening) max	Highest	Intermediate	Low
Survey and	Resistance to fatigue	Low	High/moderate	High
and a state of the	Predominant energy system	Anaerobic	Combination	Aerobic
and the second	Myoglobin	Low	Medium	High
See Sta	Capillary density	Low	Medium	High

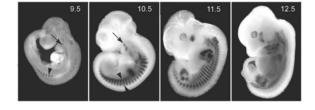
Gene family	Gene expressed								
	Slow I	Fast IIA IIX/D IIB			Heart				
Myosin heavy chain	MyHCI/slow/β	MyHC2A	MyHC2X	MyHC2B	MyHCI/slow/β	MyHCo			
Myosin light chain 1	MLC1SA MYL3		MYL1		MYL4	MYL3			
Myosin light chain 2	MYL2		MYL5		MYL7	MYL2			
Troponin C	TNNC1	1	NNC2		TNNC1				
Troponin T	TNNT1	1	NNT3		TNNT2				
Troponin I	TNNI1	1	"NNI2		TNNI3				

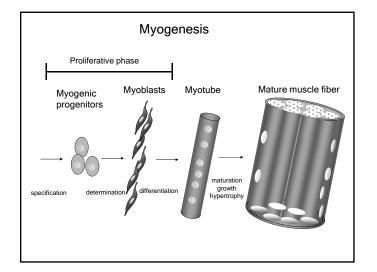

Importance of muscle fibre types

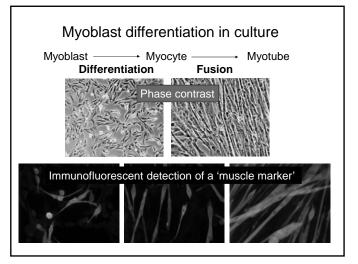
Athletic performance - marathon runners versus sprinters

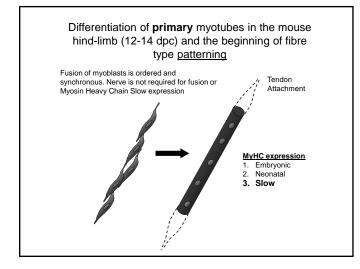
Ageing - preferential reduction of fast fibres in sarcopenia

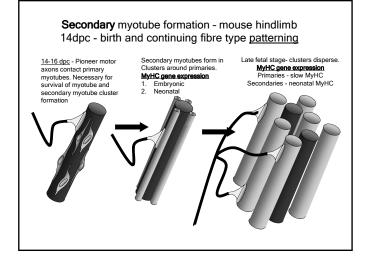
Disease – preferential loss of fast fibres in Duchenne muscular dystrophy; complete absence of fast fibres in some nemaline myopathy patients.

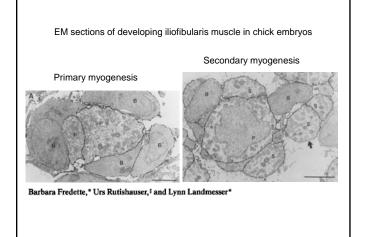

Atrophy responses – reduction of slow fibres in response to bed-rest, space flight and spinal cord injury.

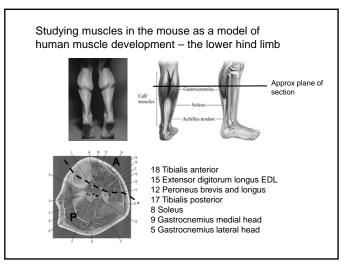


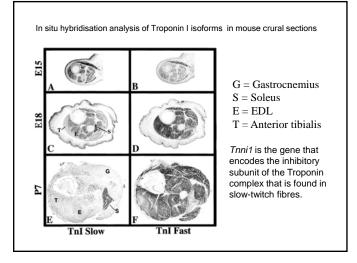

Myogenesis in the mouse

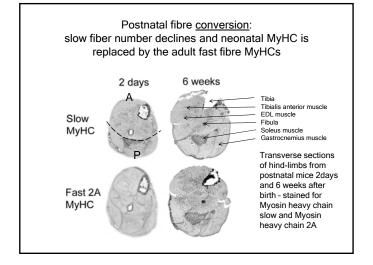

Formation of the myotome Muscle progenitors delaminate from the edges of the dermamyotome to form the myotome. Some cells migrate into the limb buds. At E10.5 the dermamyotome disintegrates centrally and the main myotome is formed


Expression of the myogenic regulatory factor (MRF) gene MyoD



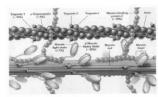






Plasticity of Muscle

Muscle Adaptation to Exercise Training

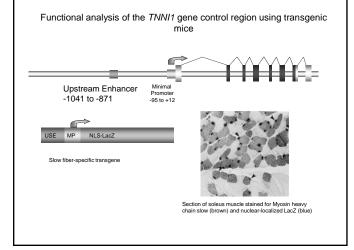

Adaptations to exercise training, particularly elevation in oxidative capacity of exercised muscle but also some myosin isoform changes mainly in fast subtypes.

Cross-Reinnervation Buller et al. (1960) – Motor nerves supplying the (slow) soleus and (fast) FDL muscles swapped around. Contraction speed of soleus got faster, FDL slower.

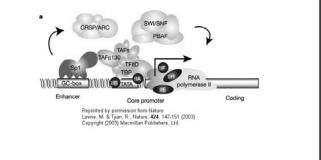
<u>Chronic Low-Frequency Stimulation (CLFS)</u> Artificial electrical stimulation of a nerve supplying a fast muscle with a tonic pattern mimics the impulse pattern of a slow nerve and induces fast to slow transformation Pette et al. (1973).

<u>Pure Fibers, Hybrid fibers and the "Next-Neighbour Rule"</u> Analysis of myofilament isoforms in single fibers reveal the presence of "pure" and "hybrid" fibers containing, for example, MHC 2B and 2X. The percentage of hybrid fibers increases dramatically in transforming muscles <60% in rabbit CLFS experiment. Timing experiments reveal a gradual stepwise transition in the direction 2B>2X>2A>I. This finding is complimented by the fact that hybrids always contain a pair of "next-neighbour" isoforms.

The Troponin I family of genes encode proteins essential for striated muscle contraction


TNNII TNNI2

TNNI3


Gene name Troponin I slow Troponin I fast Troponin I cardiac Gene ID Site of expression skeletal muscle slow fibres skeletal muscle fast fibres heart muscle

Human gene location Chromosome 1 Chromosome 11 Chromosome 19

Defenition of a promoter

A regulatory region a short distance upstream from the 5' end of a A region of DNA to which RNA polymerase II binds in order to initiate transcription.

Defenition of an enhancer

A cis-regulatory sequence that can regulate levels of transcription from an adjacent promoter. Many tissue-specific enhancers can determine spatial patterns of gene expression in higher eukaryotes. Enhancers can act on promoters over many tens of kilobases of DNA and can be 5' or 3' to the promoter they regulate.

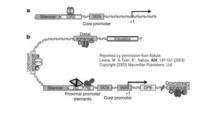
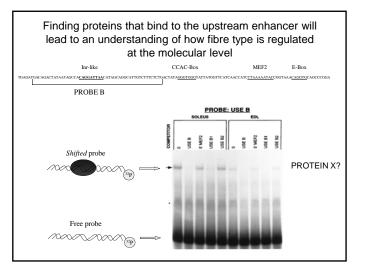



Figure 1 Comparison of a simple eukaryotic promoter and extensively diversified metazoan regulatory modules. a, Simple eukaryotic transcriptional unit. A simple core promoter (TATA), upstream activator sequence (UAS) and silencer element spaced within 100-200 by of the TATA box that is typically location in unicellate actavyotes. b, Complex metazoan transcriptional control modules. A complex arrangement of multiple clustered enhancer modules interspersed with silencer and insulator elements which can be located 10-50 kb either upstream of downstream of a composite core promoter containing TATA box (TATA), Initiator sequences (INR), and downstream promoter elements (DPE).

