Limb Development

Resources:
http://php.med.unsw.edu.au/embryology/
Larsen’s Human Embryology
The Developing Human: Clinically Oriented Embryology

Dr Annemiek Beverdam – School of Medical Sciences, UNSW
Wallace Wurth Building Room 234 – A.Beverdam@unsw.edu.au
Lecture overview

Limb Development

Embryonic tissues contributing to limb development

Limb axes
Initiation
Proximo-distal outgrowth and patterning
Antero-posterior patterning
Dorso-ventral patterning
Autopod development
Limb skeleton, musculature, innervation, vasculature
Limb rotation

Resources:
http://php.med.unsw.edu.au/embryology/
Larsen’s Human Embryology
The Developing Human: Clinically Oriented Embryology

Dr Annemiek Beverdam – School of Medical Sciences, UNSW
Wallace Wurth Building Room 234 – A.Beverdam@unsw.edu.au
End product gastrulation:

Trilaminar embryo

Ectoderm *(Neural crest)*
brain, spinal cord, eyes, *peripheral nervous system*
epidermis of skin and associated structures,
melanocytes, cranial connective tissues (dermis)

Mesoderm
musculo-skeletal system, limbs,
connective tissue of skin, organs and cranium,
urogenital system, heart, blood cells

Endoderm
epithelial linings of gastrointestinal, liver, pancreas,
thyroid and respiratory tracts
Embryonic tissues contributing to limb development

Lateral ectoderm
Lateral Plate Mesoderm
Paraxial Mesoderm

Week 4 embryo
Embryonic tissues contributing to limb development

Lateral Ectoderm
Embryonic tissues contributing to limb development

1: notochord
2: paraxial mesoderm
3: intermediate mesoderm
4: lateral plate mesoderm
Embryonic tissues contributing to limb development

Somites develop into:
- Sclerotome: mesenchymal cells (vertebral body and intervertebral disk)
- Dermomyotome: columnar epithelium

Dermomyotome develops into:
- Dermatome: dermis of the trunk
- Myotome: trunk musculature
Embryonic tissues contributing to limb development

Epaxial myotome: epimere: erector spinae (muscles of the deep back)
Hypaxial myotome: hypomere: 3 primary muscle layers (body wall, limbs)
MyoD initiates myogenesis
Embryonic tissues contributing to limb development
Somatic/parietal mesoderm: **somatopleure**
- Closest to ectoderm
- Gives rise to:
 - Connective tissue and lining of the body wall
 - Bones, ligaments and dermis of the limbs

Splanchnic/visceral mesoderm: **splanchnopleure**
- Closest to endoderm
- Gives rise to:
 - Cardiac mesoderm (prechordal splanchnic mesoderm)
 - Blood vessels
 - Smooth muscles of the gut
Limb Development

From week 4
Forelimb development ahead of hindlimb development
Proliferation of lateral plate mesoderm
Limb bud: outer ectodermal cap, inner mesodermal core
Apical Ectodermal Ridge
Limb Development

From week 4
Fore limb development ahead of hind limb development
Proliferation of lateral plate mesoderm
Limb bud: outer ectodermally-derived epithelial cap, inner mesodermally-derived core
Apical Ectodermal Ridge
Limb Development
Limb axes

- Proximodistal axis
- Anteroposterior axis
- Dorsoventral axis
Limb Development
Initiation

Anterior and posterior limb fields defined by Hox code
Hox -> Tbx4/5
Tbx5 -> FGF10 ⇔ FGF8
Limb Development
Proximo-distal outgrowth

FGF10 (mesenchyme) ⇔ FGF8 (AER)
Stylopod, zeugopod, autopod
Limb Development
Proximo-distal outgrowth

FGF signalling

Nature Reviews | Molecular Cell Biology
Limb Development
Antero-posterior patterning

ZPA: Zone of polarizing activity
Limb Development
Antero-posterior patterning
Limb Development
Antero-posterior patterning

Polydactyly
Limb Development
Antero-posterior patterning

SHH signalling

Cell Proliferation
Limb Development
Dorso-ventral patterning

Muscles, tendons dorsally; palms, soles ventrally
Wnt7a (dorsal epithelium) -> Lmx1 (dorsal mesenchyme)

Molecular control of dorsoventral (DV) patterning:

Early mesenchymal signals establish Wnt7a expression in the dorsal ectoderm and Lmx1 expression in the dorsal mesenchyme.
- Loss of expression results in bi-ventral limbs.

Expression of Wnt7a is restricted to the dorsal ectoderm because it is repressed in the ventral ectoderm by En1. En1 expression is induced by BMP signaling.
- Loss of expression results in bi-dorsal limbs.

- Important Note: Disruption of DV patterning does NOT affect specification of the skeletal elements.
Limb Development
Dorso-ventral patterning

WNT signalling

Inactive

β-catenin acts as adherens junction molecule at the membrane or is degraded.

Active

β-catenin acts as transcriptional activator in the nucleus.

[Diagram showing WNT signalling pathway with β-catenin in the nucleus and at the membrane.]
Limb Development
Autopod development

Interdigital apoptosis
Limb Development
Autopod development
Limb Development
Limb Skeleton

Endochondral ossification

Stage 13
Stage 15
Stage 17
Stage 19
Stage 21

Hu
Rad
Uln
Limb Development
Limb Musculature

Hypaxial myotome
Limb Development
Limb Musculature

Hypaxial myotome
Limb Development

Limb Innervation

Areas of sensation (dermatomes)

Cervical vertebrae (7) C_1-C_7

Thoracic vertebrae (12) T_1-T_{12}

Lumbar vertebrae (5) L_1-L_5

Sacrum (5 - fused)

Coccyx (4 - fused)
Limb Development
Limb Innervation

Stage 13
Stage 15
Stage 17
Stage 19
Stage 21

Hox6/10 code
Limb Development

Limb Vasculature

Angiogenesis from dorsal aorta
Vasculogenensis within Limb bud mesenchyme
Limb Development

Limb rotation

8th week limbs rotate in different directions
thumb and toe rostral
knee and elbow face outward

upper limb rotates dorsally
lower limb rotates ventrally
Limb Development Summary
Lecture overview
Limb Development

Embryonic tissues contributing to limb development

Limb axes
Initiation
Proximo-distal outgrowth and patterning
Antero-posterior patterning
Dorso-ventral patterning
Autopod development
Limb skeleton, musculature, innervation, vasculature
Limb rotation

Relevant to Prac Class 8

Resources:
http://php.med.unsw.edu.au/embryology/
Larsen’s Human Embryology
The Developing Human: Clinically Oriented Embryology
Dr Annemiek Beverdam – School of Medical Sciences, UNSW
Wallace Wurth Building Room 234 – A.Beverdam@unsw.edu.au