ANAT 2341 Embryology Lab 10 8 Oct 2009

Therapeutic Use of Stem Cells

Practical Hurdles & Ethical Issues

Antonio Lee PhD

Neuromuscular & Regenerative Medicine Unit School of Medical Sciences, UNSW

Stem cells in Development

- Blastocyst
- Cord blood

UNSW Embryology

http://anatomy.med.unsw.edu.au/cbl/embryo/Notes/week2_10.htm

Pluripotent Stem Cells

NIH Stem Cells: Scientific Progress and Future Research Directions http://www.nih.gov/news/stemcell/scireport.htm

What is a stem cell - Pluripotent

What is a stem cell- Definition

- Stem cell is a cell that has the ability to divide (self replicate) for indefinite periods
 - throughout life of organism
- Under the right conditions, or given the right signals, stem cells can differentiate to the many different cell types that make up the organism

Image: MBoC Fig 17.3, 17.4

Amplifying Cells

- Stem cells in many tissues divide only rarely
 - give rise to transit amplifying cells
 - daughters committed to differentiation that go through a limited series of more rapid divisions before completing the process.
 - each stem cell division gives rise in this way to eight terminally differentiated progeny

(Ab)Normal Stem Cell Production

(A) NORMAL PATHWAY

- (A) normal strategy for producing new differentiated cells
- (B and C) 2 types
 of derangement
 that can give rise
 to unbridled
 proliferation
 characteristic of
 cancer

DIVISION AND THEREBY PROLIFERATES

Stem Cell Daughter Fates

- environmental asymmetry
 - daughters are initially similar
 - directed into different pathways according to environmental influences that act on them after they are born
 - number of stem cells can be increased or reduced to fit niche available
- divisional asymmetry
 - stem cell has an internal asymmetry
 - divides in such a way that its two daughters are already endowed with different determinants at time of their birth

Possible Therapeutic Uses

- Neural
 - Parkinson's, ALS, spinal cord injury......
 - Cell Replacement
 - cell death, loss of function
 - Grafting
 - where host-graft rejection normally requires substantial ongoing immunosuppression
 - Repair
 - Spinal cord and brain injury
- Other Diseases
 - Diabetes, muscular dystrophies, cardiac, vital organs.....

Current research on stem cells

- How to:
 - Isolate
 - Grow
 - Maintain, store
 - Differentiate
 - Therapeutic uses

Stem Cell Therapy: Current Limitations on Cell Transplantation

Competition from Endogenous Cells!!

Hostile Niche for Donor Stem Cells

Enhancing Muscle Stem Cell Transplantation using Chemotherapeutic Drug Selection

- Alkylating Chemotherapy + Drug Resistant Donor Cells based on mechanisms established for Bone Marrow Transplantation
 - Efficient Elimination of Endogenous Cells
 - Creating Receptive & Favourable Niche for Donor Cells
 - Selective in vivo Expansion of the Protected Donor Cells
 - Feasibility in the Skeletal Muscle as a Solid Organ?

Skeletal Muscle Biology

Skeletal Muscle during Injury

Normal Muscle

- Muscle fibers and myonuclei are post-mitotic
- Muscle stem / satellite cells remain quiescent

Injured Muscle

- Muscle stem / satellite cells are activated and rapidly proliferate
- Differentiated cells align and fuse to form new muscle fibres

Muscle Stem Cell Transplantation - Improved Strategy

Selective Enrichment: The Mechanism

* Anthony Pegg

Selective Enrichment: The Mechanism

SELECTIVE ENRICHMENT

Muscle Stem Cell Transplantation: Protocol

Selection of Donor Cells

-CD34(+ve) cells using magnetic cell sorting (6hrs) with no expansion

- 6 x 10⁴ donor cells per injection

Higher Engraftment of MGMT(P140K)** Donors in Chemo-Ablated

Recipient Muscle Bed

De Novo Muscle Fibre Formation by MGMT(P140K)+ve Donors

D14 post-transplantation

Y-Chromosome FISH / DAPI

Absence of Dystrophin in the Duchenne Muscular Dystrophy (DMD) Patients and *mdx* Mice

Duchenne Muscular Dystrophy (DMD)

- X-linked disorder with defects in Dystrophin gene
- 1:3500 live Male Birth (20,000 babies / year)
- Confined to wheelchair by 12 yrs and death by 30 yrs
- Several mouse models exist including mdx mice (Dystrophin KO)

Restored Dystrophin Expression by Engrafted MGMT(P140K)^{+ve} Donors in the Recipient *mdx* Muscle

