INTRODUCTION

- The first pages illustrate introductory concepts for those new to microscopy as well as definitions of commonly used histology terms.

- The drawings of histology images were originally designed to complement the histology component of the first year Medical course run prior to 2004.

- They are sketches from selected slides used in class from the teaching slide set.

- These labelled diagrams should closely follow the current Science courses in histology, anatomy and embryology and complement the virtual microscopy used in the current Medical course.
Do all microscope slides show 2-D slices of 3-D structures?

No, slides can also be smears, where entire cells lie on the surface of the slide, or whole tissue mounts of very thin structures, such as mesentery.

Do microscope images of 2-D slices represent a single plane of section of a 3-D structure?

No, 2-D slices have a thickness which can vary from a sliver of one cell to several cells deep. With the limited depth of field of high power lenses it is possible to focus through the various levels within a slice.

© Dr Carol Lazer, April 2005
LININGS, COVERINGS & TERMINOLOGY

KEY
- epithelium
- connective tissue beneath epithelium
- connective tissue, muscle, glands, etc

GENERALISED SECTION OF THE BODY

SKIN
Covers the external surface.

epidermis
(keratinised stratified squamous epithelium)
ORIGIN: ectoderm

MUCOSA or MUCOUS MEMBRANE
has a wet surface (mucus).
Lines organs that open to the outside.

ORIGIN: endoderm or mesoderm

MESOTHELIUM
(simple squamous epithelium)
ORIGIN: mesoderm

SEROSA or SEROUS MEMBRANE
has a wet surface (watery).
Lines body cavities.
Covers organs in body cavities.

ORIGIN: endoderm or mesoderm

ADVENTITIA
Connective tissue of one structure meets connective tissue of another structure.

lamina propria
lining epithelium
ORIGIN: endoderm or mesoderm

blood vessel lined by endothelium
(simple squamous epithelium)
ORIGIN: mesoderm

© Dr Carol Lazer, September 2000 – April 2005
COVERING AND LINING EPITHELIA

STRATIFIED EPITHELIA

Tissue / Organ:
- Bladder (relaxed)
- Bladder (stretched)
- Oesophagus
- Skin (epidermis)

Epithelium:
- Transitional
- Non-keratinised stratified squamous
- Keratinised stratified squamous
- Keratinised
- Keratinised stratified squamous

Strata:
- Corneum
- Granulosum
- Spinosum
- Germinativum
- Lamina propria
- Mitotic figure
- Squames
- Squamous
- Spinosum
- Germinativum
- Dermis
- Mitotic figure
- Vacuoles (folded plasma membrane)
- Binucleate cell
- Adluminal or facet cell

© Dr Carol Lazer, August 2000 – April 2005
SIMPLE EPITHELIA

EPITHELIUM:
- simple cuboidal

TISSUE / ORGAN:
- thyroid

EPITHELIUM:
- simple squamous

TISSUES / ORGANS:
1. endothelium lining blood vessel
2. mesothelium of serosa covering lung

EPITHELIUM:
- simple columnar or pseudostratified columnar

TISSUE / ORGAN:
- seminal vesicle (ox)

EPITHELIUM:
- pseudostratified columnar (respiratory epithelium)

MORE FULLY: pseudostratified ciliated columnar epithelium with goblet cells

TISSUE / ORGAN:
- trachea

© Dr Carol Lazer, August 2000 – April 2005
FEATURE: sebaceous gland
TISSUE / ORGAN: around hair follicle in dermis of skin

FEATURE: eccrine sweat gland
TISSUE / ORGAN: dermis of skin (also in hypodermis)

FEATURE: duct and secretory portions, myoepithelial cells
TISSUE / ORGAN: eccrine sweat gland

Are myoepithelial cells only present around sweat glands and what is their function?

They are found around the secretory acini and some ducts of many glands. They contract under autonomic nervous control to expel the glandular secretions.
FEATURE: lobe, lobules and ducts
TISSUE / ORGAN: compound tubulo-alveolar (tubulo-acinar) gland

- interlobular duct = excretory duct [drains the lobes of a gland]
- interlobular duct = intralobular duct [drains many lobules in a lobe]
- intralobular duct (e.g. striated duct) [drains many acini in a lobule]
- intercalated duct [drains each acinus]

FEATURE: lobe, lobules and ducts (TS)
TISSUE / ORGAN: part of a lobe of salivary gland

- mucous secretory tube
- intercalated ducts
- small lumen
- serous demilune

mucous acinus
Wedge-shaped cells filled with pale staining remnant of mucous secretion and flattened basal nuclei

serous acinus
Wedge-shaped cells packed with zymogen granules and round nucleus

FEATURE: serous and mucous acini and ducts
TISSUE / ORGAN: submandibular salivary gland

- Do all compound glands have striated ducts?

No, they all have intralobular ducts but these have a characteristic appearance in the salivary gland and so have a different name.
CONNECTIVE TISSUE

DENSE CONNECTIVE TISSUE

CLASSIFICATION: dense regular connective tissue (showing crimp pattern)
TISSUE / ORGAN: tendon or ligament fascicle

What is the difference between this specimen and the one before?

It is stained to show elastic fibres. These were always present but not seen without the special stain.

© Dr Carol Lazer, August 2000 – April 2005
SPECIFIC TISSUES & FIBRES

CLASSIFICATION: brown and white adipose tissue
TISSUE / ORGAN: fat stored in body

brown fat cell (brown adipocyte)
centrally located round nucleus
lipid droplet (one of many -- multilocular)
collagenous septum separating fat lobules
fibroblast nucleus
white fat cell (white adipocyte)
flattened nucleus
single large lipid droplet (unilocular)
blood vessel

CLASSIFICATION: reticular fibres
TISSUE / ORGAN: lymph node

capsule with collagen and reticular fibres
reticular fibre
collagen fibre
macrophage
mast cell
fibroblast nucleus

CLASSIFICATION: elastic fibres
TISSUE / ORGAN: elastic artery (brachial artery)

colagen fibre
myofibroblast
collagen fibre
elastic fibres
endothelium
lymphocyte
fenestration
crenated elastic fibre (TS)
collagen fibre
elastic fibre (TS)

© Dr Carol Lazer, August 2000 – April 2005
FEATURE: blood cell types
TISSUE / ORGAN: peripheral blood

ERYTHROCYTE
- biconcave disc with pale centre
- rouleaux formation
- stack of erythrocytes

SMALL LYMPHOCYTE
- with a large, round nucleus and blue cytoplasmic rim

MONONUCLEAR LEUKOCYTES or AGRANULOCYTES

NEUTROPHIL
- with multi-lobed nucleus and many small granules

EOSINOPHIL
- with bi-lobed nucleus and many large red granules of similar size

BASOPHIL
- with many blue granules of different size that obscure the nucleus

MONOCYTE
- with a single nucleus that may be irregular or bean shaped and blue cytoplasm which may have tiny granules or vacuoles
- Indentation of the nucleus (monocyte or lymphocyte) is caused by proximity to the Golgi apparatus.

MONONUCLEAR LEUKOCYTES or AGRANULOCYTES

PLATELETS
- cytoplasmic fragments with a dark chromomere and pale hyalomere

POLYMPHONUCLEAR LEUKOCYTES or GRANULOCYTES

FEATURE: tissue eosinophil (and plasma cells)
TISSUE / ORGAN: lamina propria of glands of stomach mucosa

FEATURE: plasma cell
TISSUE / ORGAN: lamina propria of salivary gland secretory acini

BLOOD CELLS (SMEAR)

BLOOD-RELATED CELLS (SECTION)

MONONUCLEAR LEUKOCYTES or AGRANULOCYTES

MONONUCLEAR LEUKOCYTES or AGRANULOCYTES

FEATURE: megakaryocyte
TISSUE / ORGAN: bone marrow

FEATURE: osteoclast
TISSUE / ORGAN: bone trabecula

© Dr Carol Lazer, November 2001 – April 2005
CARTILAGE AND BONE

FEATURE: hyaline cartilage
TISSUE / ORGAN: trachea

attachment side

FEATURE: elastic cartilage
TISSUE / ORGAN: pinna of ear

external ear side
COMPACT BONE

FEATURE: Haversian systems (= osteons) with lamellae (TS)
TISSUE / ORGAN: diaphysis (shaft) of femur

FEATURE: Haversian systems (= osteons) with lamellae (LS)
TISSUE / ORGAN: diaphysis of femur
BONE / MUSCLE FORMATION & JOINTS

INTRAMEMBRANOUS OSSIFICATION

FEATURE: intramembranous ossification examples

TISSUE / ORGAN:
1. dura mater and calvaria
2. Meckel’s cartilage and mandible

STRIATED MUSCLE DEVELOPMENT

FEATURE: myoblasts and myotubes (developing striated muscle cells)

TISSUE / ORGAN: fetal tongue

© Dr Carol Lazer, September 2002 – April 2005
ENDOCHONDRAL OSSIFICATION

FEATURE: stages in long bone development
TISSUE / ORGAN: fetal rat tail

TISSUE / ORGAN: intervertebral disc
endochondral ossification
marrow cavity

JOINTS

DISTAL
hyaline cartilage
"model" of bone

collar of intramembranous bone in perichondrium
swelling, dying chondrocytes
ingrowth of blood vessels, marrow cells and periosteal osteoprogenitor cells

PROXIMAL
fibrous periosteum
cellular periosteum with osteoprogenitor cells

FEATURE: developing symphysis joint
TISSUE / ORGAN: intervertebral disc

JOINTS

nucleus pulposus
annulus fibrosus
collagen fibres and matrix

chondrocytes and cartilage matrix
trabecula
marrow cell
forming Haversian canal
marrow

FEATUE: bone growth and remodelling
TISSUE / ORGAN: periosteal collar of vertebra

ENDOCHONDRAL OSSIFICATION

ZONES
resting chondrocytes
proliferating chondrocytes
chondrocyte hypertrophy
calcifying matrix
resorption

perichondrial-lined perforating channels with blood vessels (cartilage canals)
perichondrium
perioSteum
aponeurosis
tendon or striated muscle

articular cartilage
synovial cavity
articulating surface
hyaline cartilage
articular disc

bone trabeculae
blood vessels
bone growth

© Dr Carol Lazer, October 2002 – April 2005
Why is there a large variation in smooth muscle nuclei (TS) from absent to small to large? The cells are so long that sections cut the ovoid nucleus from centre to edge or even miss it.
CLASSIFICATION: single smooth muscle cells
TISSUE / ORGAN: intestinal villus

CLASSIFICATION: cardiac muscle fascicles
TISSUE / ORGAN: heart (interventricular septum)
NERVOUS TISSUE

CENTRAL NERVOUS SYSTEM (CNS)

- **dura mater**
- **arachnoid**
- **pia mater**
- **septum of pia mater**
- **grey matter**
- **white matter**
- **dorsal nerve rootlet**
- **small neuron of dorsal horn**
- **ependymal cells around central canal**
- **motor neuron of ventral horn**
- **myelin sheath**
- **Nodes of Ranvier**
- **paranodal swelling**
- **node of Ranvier**
- **axon hillock**
- **Nissl granules**
- **ventral nerve rootlet**

FEATURE: white matter and cells of grey matter
TISSUE / ORGAN: spinal cord and meninges

PERIPHERAL NERVOUS SYSTEM (PNS)

- **endoneurium**
- **perineurium**
- **epineurium**
- **blood vessel (vasa nervorum)**
- **myelinated nerve fibre**
- **Schmidt-Lanternman cleft**
- **myelin sheath**
- **axon hillock**
- **axon**
- **dendrite**

FEATURE: myelin sheath
TISSUE / ORGAN: peripheral nerve (TS)

FEATURE: Nodes of Ranvier
TISSUE / ORGAN: peripheral nerve (LS)
FEATURE: Schwann cells
TISSUE / ORGAN: sciatic nerve

FEATURE: pseudounipolar neurons and myelin
TISSUE / ORGAN: trigeminal sensory ganglion

FEATURE: peripheral nerve fascicles
TISSUE / ORGAN: connective tissue (tongue)
FETAL MEMBRANES

PLACENTA

FEATURE: chorionic plate, villi, uterine wall
TISSUE / ORGAN: placenta (3 months)

UMBILICAL CORD

FEATURE: vessels and Wharton’s jelly
TISSUE / ORGAN: umbilical cord (TS)

Warton’s jelly is an artefact of “dead” umbilical cord. What should “living” cord look like and why is this different?

Before birth the cord has three large vessels and very little connective tissue. After birth the blood flow stops and without blood pressure the vessels collapse. The connective tissue swells with fluid that leaks from the vessels.