Some reading.....

<u>1. NAD Deficiency, Congenital Malformations and Niacin Supplementation.</u>

Shi H, Enriquez A, Rapadas M, Martin EMMA. Wang R, Moreau J, Lim CK, Szot JO, Ip E, Hughes J, Sugimoto K, Humphreys D, McInerney-Leo AM, Leo PJ, Maghzal GJ, Halliday J, Smith J, Colley A, Mark PR, Collins F, Sillence DO, Winlaw DS, Ho J, Guillemin GJ, Brown MA, Kikuchi K, Thomas PQ, Stocker R, Giannoulatou E, Chapman G, Duncan EL, Sparrow DB, **Dunwoodie SL.**

The New England Journal of Medicine. 2017;377(6):544-552.

2. Metabolism and Congenital Malformations — NAD's Effects on Development Matthew G. Vander Heiden, The New England Journal of Medicine. 2017; 377(6):509-511

Sally Dunwoodie

s.dunwoodie@victorchang.edu.au

Summer Student Scholarships

Victor Chang Identifying genetic and environmental factors that disrupt embryogenesis Sally L Dunwoodie s.dunwoodie@victorchang.edu.au

Dr Victor Chang AC 1936-1991, Pioneering Cardiothoracic Surgeon and Humanitarian

Mesoderm Development Lecture

Gastrulation

Early Mesoderm Development

Notochord

Paraxial Mesoderm

Intermediate Mesoderm

Lateral Plate Mesoderm

Early Heart Development

Dr Annemiek Beverdam – School of Medical Sciences, UNSW Wallace Wurth Building Room 234 – A.Beverdam@unsw.edu.au

Somites give rise to the vertebral column

2: Paraxial Mesoderm AP patterning Somite Derivative Specification depends on AP level/*Hox* code

NOTCH1 target gene expression in the presomitic mesoderm

Lfng-GFP

Aulehla et al Nat Cell Biol 2008

NOTCH1 activity in the presomitic mesoderm

Farkas et al Nature 2002

Dll3 is required for formation of somites and vertebrae

Dunwoodie et al Dev 2002

Genes required for somitogenesis in mouse

	+/+ -/-	a	+/-
DII3-/-	Mesp2-/-	Lfng-/-	Hes7-/-
Adam10	Efnb2	Meox1	Ripply1
Aldh1a2	Epha1	Meox2	Ripply2
Aphla	Fn1	Mesp2	Sfrp1
Axin1	Fgf3	Mib1	Sfrp2
Cdh2	Fgf4/Fgf8	Msgn1	Sip1
Cdh2	Fgfr1	Ncstn	Tbx6
Cdh11	Foxc1	Notch1	Tbx18
Сур26а1	Foxc2	Pax1	Tcf15
Dact1	Has2	Pax3	Uncx
Dll1	Hes7	Pofut1	Wnt3a
DII3	ltgav	Psen1	Zic2
Dkk1	Lef1	Rbpj	Zic3
Dvl2	Lfng	Rere	
	Lrp6		

MOUSE 1-3 hours per somite embryonic days 8-13 36 vertebrae + 26 in tail HUMAN 4-6 hours per somite embryonic days 20-30 33 vertebrae

Spondylocostal dysostosis (SCD) is caused by mutation in Notch associated genes SCD1 DLL3 SCD2 MESP2

Bulman et al 2000 Turnpenny et al 2003

Whittock et al 2004

SCD3 LFNG

Sparrow et al 2006

SCD4 HES7

Sparrow et al 2008

MESP2 **RIPPLY2** TBX6

DLL3

SCD6 RIPPLY2

McInerney-Leo et al 2014

Complex birth defects

heart vertebra kidney

> limb digit palate

Folic acid supplementation reduces the incidence of neural tube defects

HAAO or KYNU variants in families with multiple congenital malformation and miscarriage

2005 – 2012

HAAO: p.D162* (HAAO)

В

HAAO or KYNU variants in families with multiple congenital malformation and miscarriage

KYNU and HAAO required to synthesise NAD from tryptophan

NAD precursors

tryptophan 60:1 vitamin B3 1:1 niacin equivalents

Vitamin B3

niacin/nicotinic acid nicotinamide nicotinamide riboside Building evidence of a gene or variant's role in disease

Does the variant disrupt protein function?

Does the variant affect protein function in patients?

Is the genes required for embryogenesis?

What alters penetrance and expressivity of the variant?

Are the variant enzymes active?

- quantifying enzymatic activity in vitro

Family	Α	В	C	D
Gene	HAAO	HAAO	KYNU	KYNU
DNA variant(s)	c.483dupT homozygous	c.558G>A homozygous	c.170-1G>T homozygous	c.468T>A c.1045_1051 delTTTAAGC
Protein variant(s)	p.D162*	p.W186*	p.V57Efs*21	p.Y156* p.F349Kfs*4

KYNU specific activity

Do the variants affect enzyme function in patients? **YES!**

-quantifying metabolites in patients

Is the genes required for embryogenesis? -identifying a phenoty in mice

Kynu +/-

Defects: heart, vertebral, kidney, cleft palate, talipes, syndactyly, caudal agenesis

Z

Х

Increase in upstream metabolites Decrease in downstream metabolites

YES

V

W

What alters the effect of (penetrance/expressivity) of the variant? Niacin supplementation prevents NAD deficiency and defects

Niacin supplementation prevents NAD deficiency and defects

Niacin supplementation prevents NAD deficiency and defects

Methodologies used in this research

- genome sequencing (human)
- enzyme activity assays (in vitro)
- quantifying metabolites with LC-MS (human and mouse)
- generation of mutant mice (CRISPR-Cas9)
- mouse phenotyping (skeletal, heart, kidney, etc)
- whole mouse embryo phenotyping (microCT)

Using microCT to phenotype mouse embryos and whole litters

E11.5

E14.5

s.dunwoodie@victorchang.edu.au

Dunwoodie Laboratory Gavin Chapman Justin Szot Ella Martin Joelene Major Kavitha Iver Annabelle Enriquez **Dimuthu Alankarage** Hartmut Cuny Jess Gereis Debjani Das Moran Almog Duncan Sparrow Hongjun Shi Rosemary Kirk Melissa Rapadas

David Sillence, Children's Hospital Westmead, Sydney Janine Smith, Children's Hospital Westmead, Sydney Alison Colley, Liverpool Hospital, Sydney Paul Mark, Spectrum Health, Grand Rapids, Michigan

CHD Collaborators- clinical

David Winlaw, Children's Hospital Westmead, Sydney Gillian Blue, Children's Hospital Westmead, Sydney Nicholas Pachter, Genetic Services of WA, Perth Katrina Harrison, Genetic Services of WA, Perth Edwin Kirk, Sydney Children's Hospital, Sydney

Bioinformatics @ VCCRI

Eleni Giannoulatou David Humphreys Eddie Ip Michael Troup

Australian Government

National Health and Medical Research Council

