Therapeutic Use of Stem Cells

Practical Hurdles & Ethical Issues

Antonio Lee PhD
Neuromuscular & Regenerative Medicine Unit
School of Medical Sciences, UNSW

Stem cells in Development

- Blastocyst
- Cord blood

Pluripotent Stem Cells

- Pluripotent
 - to describe stem cells that can give rise to
cells derived from all 3 embryonic germ
 layers
 - Mesoderm
 - Endoderm
 - Ectoderm
 - layers are embryonic source of all cells of the
 body

Stem Cells © Dr Mark Hill 2006 Slide
What is a stem cell- Definition

• Stem cell is a cell that has the ability to divide (self replicate) for indefinite periods
 – throughout life of organism
• Under the right conditions, or given the right signals, stem cells can differentiate to the many different cell types that make up the organism

Amplifying Cells

• Stem cells in many tissues divide only rarely
 – give rise to transit amplifying cells
 – daughters committed to differentiation that go through a limited series of more rapid divisions before completing the process.
 – each stem cell division gives rise in this way to eight terminally differentiated progeny

(Ab)Normal Stem Cell Production

• (A) normal strategy for producing new differentiated cells
• (B and C) 2 types of derangement that can give rise to unbridled proliferation characteristic of cancer

Stem Cell Daughter Fates

• environmental asymmetry
 – daughters are initially similar
 – directed into different pathways according to environmental influences that act on them after they are born
 – number of stem cells can be increased or reduced to fit niche available
• divisional asymmetry
 – stem cell has an internal asymmetry
 – divides in such a way that its two daughters are already endowed with different determinants at time of their birth
Possible Therapeutic Uses

• Neural
 – Parkinson’s, ALS, spinal cord injury……..
 – Cell Replacement
 • cell death, loss of function
 – Grafting
 • where host-graft rejection normally requires substantial ongoing immunosuppression
 – Repair
 • Spinal cord and brain injury

• Other Diseases
 – Diabetes, muscular dystrophies, cardiac, vital organs…..

Current research on stem cells

• How to:
 – Isolate
 – Grow
 – Maintain, store
 – Differentiate
 – Therapeutic uses

Stem Cell Therapy: Current Limitations on Cell Transplantation

- Cell Type?
- Cell Number?
- Route of Delivery?

Enhancing Muscle Stem Cell Transplantation using Chemotherapeutic Drug Selection

• Alkylating Chemotherapy + Drug Resistant Donor Cells -
 based on mechanisms established for Bone Marrow Transplantation
 - Efficient Elimination of Endogenous Cells
 - Creating Receptive & Favourable Niche for Donor Cells
 - Selective in vivo Expansion of the Protected Donor Cells
 - Feasibility in the Skeletal Muscle as a Solid Organ?
Skeletal Muscle Biology

- Normal Muscle
 - Muscle fibers and myonuclei are post-mitotic
 - Muscle stem / satellite cells remain quiescent

- Injured Muscle
 - Muscle stem / satellite cells are activated and rapidly proliferate
 - Differentiated cells align and fuse to form new muscle fibres

Muscle Stem Cell Transplantation - Improved Strategy

- Wild-Type cell
 - Alkylates DNA
 - BCNU
 - Cell survives

- MGMT-P140K Expressing Cell
 - Alkylates DNA
 - BCNU
 - Cell survives

Selective Enrichment: The Mechanism

- Wild-Type cell
 - Alkylates DNA
 - BCNU
 - Cell death

- MGMT-P140K Expressing Cell
 - Alkylates DNA
 - BCNU
 - Cell survives

* Anthony Pegg
Selective Enrichment: The Mechanism

Muscle Stem Cell Transplantation: Protocol

Higher Engraftment of MGMT(P140K) Donors in Chemo-Ablated Recipient Muscle Bed

De Novo Muscle Formation by MGMT(P140K) Donors
Absence of Dystrophin in the Duchenne Muscular Dystrophy (DMD) Patients and mdx Mice

- Duchenne Muscular Dystrophy (DMD)
 - X-linked disorder with defects in Dystrophin gene
 - 1:3500 live Male Birth (20,000 babies / year)
 - Confined to wheelchair by 12 yrs and death by 30 yrs
 - Several mouse models exist including mdx mice
 (Dystrophin KO)

Restored Dystrophin Expression by Engrafted MGMT(P140K)+ve Donors in the Recipient mdx Muscle

Dystrophin - Wildtype EDL

Dystrophin - Treated with BRU

Dystrophin - Treated with O6BG

Dystrophin - Engrafted with MGMT-P140K+ve