Talk:Somitogenesis

From Embryology
Revision as of 14:58, 9 August 2012 by Z8600021 (talk | contribs)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, June 1) Embryology Somitogenesis. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Somitogenesis


2012

From dynamic expression patterns to boundary formation in the presomitic mesoderm

PLoS Comput Biol. 2012 Jun;8(6):e1002586. Epub 2012 Jun 28.

Tiedemann HB, Schneltzer E, Zeiser S, Hoesel B, Beckers J, Przemeck GK, de Angelis MH. Source Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.

Abstract

The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM) precedes the rhythmic budding of nascent somites at its anterior end, which later develops into epithelialized structures, the somites. Although many in silico models describing partial aspects of somitogenesis already exist, simulations of a complete causal chain from gene expression in the growth zone via the interaction of multiple cells to segmentation are rare. Here, we present an enhanced gene regulatory network (GRN) for mice in a simulation program that models the growing PSM by many virtual cells and integrates WNT3A and FGF8 gradient formation, periodic gene expression and Delta/Notch signaling. Assuming Hes7 as core of the somitogenesis clock and LFNG as modulator, we postulate a negative feedback of HES7 on Dll1 leading to an oscillating Dll1 expression as seen in vivo. Furthermore, we are able to simulate the experimentally observed wave of activated NOTCH (NICD) as a result of the interactions in the GRN. We esteem our model as robust for a wide range of parameter values with the Hes7 mRNA and protein decays exerting a strong influence on the core oscillator. Moreover, our model predicts interference between Hes1 and HES7 oscillators when their intrinsic frequencies differ. In conclusion, we have built a comprehensive model of somitogenesis with HES7 as core oscillator that is able to reproduce many experimentally observed data in mice.

PMID 22761566

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002586

2011

FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis

Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4018-23. Epub 2011 Feb 22.

Naiche LA, Holder N, Lewandoski M.

Genetics of Vertebrate Development Section, National Cancer Institute, Frederick, MD 21701. Abstract Somites form along the embryonic axis by sequential segmentation from the presomitic mesoderm (PSM) and differentiate into the segmented vertebral column as well as other unsegmented tissues. Somites are thought to form via the intersection of two activities known as the clock and the wavefront. Previous work has suggested that fibroblast growth factor (FGF) activity may be the wavefront signal, which maintains the PSM in an undifferentiated state. However, it is unclear which (if any) of the FGFs expressed in the PSM comprise this activity, as removal of any one gene is insufficient to disrupt early somitogenesis. Here we show that when both Fgf4 and Fgf8 are deleted in the PSM, expression of most PSM genes is absent, including cycling genes, WNT pathway genes, and markers of undifferentiated PSM. Significantly, markers of nascent somite cell fate expand throughout the PSM, demonstrating the premature differentiation of this entire tissue, a highly unusual phenotype indicative of the loss of wavefront activity. When WNT signaling is restored in mutants, PSM progenitor markers are partially restored but premature differentiation of the PSM still occurs, demonstrating that FGF signaling operates independently of WNT signaling. This study provides genetic evidence that FGFs are the wavefront signal and identifies the specific FGF ligands that encode this activity. Furthermore, these data show that FGF action maintains WNT signaling, and that both signaling pathways are required in parallel to maintain PSM progenitor tissue.

PMID: 21368122

The chick somitogenesis oscillator is arrested before all paraxial mesoderm is segmented into somites http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836991/?tool=pmcentrez&report=abstract

2010

Regulator of g protein signaling 3 modulates wnt5b calcium dynamics and somite patterning

PLoS Genet. 2010 Jul 8;6(7):e1001020.

Freisinger CM, Fisher RA, Slusarski DC. Source Department of Biology, University of Iowa, Iowa City, Iowa, United States of America. Abstract Vertebrate development requires communication among cells of the embryo in order to define the body axis, and the Wnt-signaling network plays a key role in axis formation as well as in a vast array of other cellular processes. One arm of the Wnt-signaling network, the non-canonical Wnt pathway, mediates intracellular calcium release via activation of heterotrimeric G proteins. Regulator of G protein Signaling (RGS) proteins can accelerate inactivation of G proteins by acting as G protein GTPase-activating proteins (GAPs), however, the possible role of RGS proteins in non-canonical Wnt signaling and development is not known. Here, we identify rgs3 as having an overlapping expression pattern with wnt5b in zebrafish and reveal that individual knockdown of either rgs3 or wnt5b gene function produces similar somite patterning defects. Additionally, we describe endogenous calcium release dynamics in developing zebrafish somites and determine that both rgs3 and wnt5b function are required for appropriate frequency and amplitude of calcium release activity. Using rescue of gene knockdown and in vivo calcium imaging assays, we demonstrate that the activity of Rgs3 requires its ability to interact with Galpha subunits and function as a G protein GAP. Thus, Rgs3 function is necessary for appropriate frequency and amplitude of calcium release during somitogenesis and is downstream of Wnt5 activity. These results provide the first evidence for an essential developmental role of RGS proteins in modulating the duration of non-canonical Wnt signaling.

PMID: 20628572 http://www.ncbi.nlm.nih.gov/pubmed/20628572

Somitogenesis clock-wave initiation requires differential decay and multiple binding sites for clock protein

PLoS Comput Biol. 2010 Apr 1;6(4):e1000728.

Campanelli M, Gedeon T. Source Department of Mathematics and Computer Science, Southwest Minnesota State University, Marshall, Minnesota, United States of America. Abstract Somitogenesis is a process common to all vertebrate embryos in which repeated blocks of cells arise from the presomitic mesoderm (PSM) to lay a foundational pattern for trunk and tail development. Somites form in the wake of passing waves of periodic gene expression that originate in the tailbud and sweep posteriorly across the PSM. Previous work has suggested that the waves result from a spatiotemporally graded control protein that affects the oscillation rate of clock-gene expression. With a minimally constructed mathematical model, we study the contribution of two control mechanisms to the initial formation of this gene-expression wave. We test four biologically motivated model scenarios with either one or two clock protein transcription binding sites, and with or without differential decay rates for clock protein monomers and dimers. We examine the sensitivity of wave formation with respect to multiple model parameters and robustness to heterogeneity in cell population. We find that only a model with both multiple binding sites and differential decay rates is able to reproduce experimentally observed waveforms. Our results show that the experimentally observed characteristics of somitogenesis wave initiation constrain the underlying genetic control mechanisms.

PMID: 20369016 http://www.ncbi.nlm.nih.gov/pubmed/20369016

Sonic hedgehog in temporal control of somite formation

Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12907-12. Epub 2010 Jul 1.

Resende TP, Ferreira M, Teillet MA, Tavares AT, Andrade RP, Palmeirim I. Source Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal.

Abstract

Vertebrate embryo somite formation is temporally controlled by the cyclic expression of somitogenesis clock genes in the presomitic mesoderm (PSM). The somitogenesis clock is believed to be an intrinsic property of this tissue, operating independently of embryonic midline structures and the signaling molecules produced therein, namely Sonic hedgehog (Shh). This work revisits the notochord signaling contribution to temporal control of PSM segmentation by assessing the rate and number of somites formed and somitogenesis molecular clock gene expression oscillations upon notochord ablation. The absence of the notochord causes a delay in somite formation, accompanied by an increase in the period of molecular clock oscillations. Shh is the notochord-derived signal responsible for this effect, as these alterations are recapitulated by Shh signaling inhibitors and rescued by an external Shh supply. We have characterized chick smoothened expression pattern and have found that the PSM expresses both patched1 and smoothened Shh signal transducers. Upon notochord ablation, patched1, gli1, and fgf8 are down-regulated, whereas gli2 and gli3 are overexpressed. Strikingly, notochord-deprived PSM segmentation rate recovers over time, concomitant with raldh2 overexpression. Accordingly, exogenous RA supplement rescues notochord ablation effects on somite formation. A model is presented in which Shh and RA pathways converge to inhibit PSM Gli activity, ensuring timely somite formation. Altogether, our data provide evidence that a balance between different pathways ensures the robustness of timely somite formation and that notochord-derived Shh is a component of the molecular network regulating the pace of the somitogenesis clock.

PMID: 20615943 http://www.ncbi.nlm.nih.gov/pubmed/20615943

2009

Sprouty4, an FGF inhibitor, displays cyclic gene expression under the control of the notch segmentation clock in the mouse PSM

PLoS One. 2009;4(5):e5603. Epub 2009 May 19.

Hayashi S, Shimoda T, Nakajima M, Tsukada Y, Sakumura Y, Dale JK, Maroto M, Kohno K, Matsui T, Bessho Y. Source Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan.

Abstract BACKGROUND: During vertebrate embryogenesis, somites are generated at regular intervals, the temporal and spatial periodicity of which is governed by a gradient of fibroblast growth factor (FGF) and/or Wnt signaling activity in the presomitic mesoderm (PSM) in conjunction with oscillations of gene expression of components of the Notch, Wnt and FGF signaling pathways.

PRINCIPAL FINDINGS: Here, we show that the expression of Sprouty4, which encodes an FGF inhibitor, oscillates in 2-h cycles in the mouse PSM in synchrony with other oscillating genes from the Notch signaling pathway, such as lunatic fringe. Sprouty4 does not oscillate in Hes7-null mutant mouse embryos, and Hes7 can inhibit FGF-induced transcriptional activity of the Sprouty4 promoter.

CONCLUSIONS: Thus, periodic expression of Sprouty4 is controlled by the Notch segmentation clock and may work as a mediator that links the temporal periodicity of clock gene oscillations with the spatial periodicity of boundary formation which is regulated by the gradient of FGF/Wnt activity.

PMID 19440349

Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites

PLoS Genet. 2009 Sep;5(9):e1000662. Epub 2009 Sep 25.

Ferjentsik Z, Hayashi S, Dale JK, Bessho Y, Herreman A, De Strooper B, del Monte G, de la Pompa JL, Maroto M. Source Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom. Abstract Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.

PMID 19779553

2003

Somites, spinal Ganglia, and centra. Enumeration and interrelationships in staged human embryos, and implications for neural tube defects

Cells Tissues Organs. 2003;173(2):75-92.

O'Rahilly R, Müller F. Source School of Medicine, University of California, Davis, USA.

Abstract

Serial sections of 99 human embryos from Carnegie stages 8-23 were investigated and 38 graphic reconstructions were evaluated. At stage 9 somite 1 is of appreciable size and is separated from the otic disc, as also in the next several stages by rhombomeres and pharyngeal arches 3 and 4, thereby differing from the chick. At stage 10 somite 1 begins to differentiate into sclerotome and dermatomyotome. At stage 11 spinal neural crest begins to develop. At stage 12 parts of somites 1-4 are being transformed into the hypoglossal cell cord. It is stressed that the numbers of somites present at stages 9-12 are part of the definition of those stages. At stage 13 dense and loose zones begin to be detectable rostrally in the sclerotomes and also, although out of phase, in the perinotochord. Spinal ganglia begin to develop in phase with the somites. At stages 14-16 the maximum number of somites observed was 38-39 rather than 42-44, as usually given. Moreover, they did not extend to the tapered end of the trunk, which is not a (vertebrated) 'tail'. At stages 17-23 the maximum number of centra was 38-39, including coccygeal vertebrae 4-5. Although most of the somites appear during primary development, all of the spinal ganglia develop during secondary development (stages 13-18). The number of ganglia was at a maximum of 35 at stage 18, but was reduced to 32 already by stage 23. Important points confirmed in this study are that the number of occipital somites in the human is four, and that the level of final closure of the caudal neuropore is future somite 31, which represents approximately future sacral vertebra 2. The interpretation of relevant neural tube defects is discussed in the light of the findings. The ascensus of the conus medullaris during the fetal period is well established, but a concomitant ascent of the situs neuroporicus is proposed here, and has implications for defects that involve tethering of the spinal cord. The main results are integrated in comprehensive graphic representations of the levels and the interrelationships of (a) somites and centra, and (b) somites, neural crest, and spinal ganglia. These may aid in the elucidation of some frequently occurring anomalous conditions.

Copyright 2003 S. Karger AG, Basel

PMID 12649586