Talk:Integumentary System - Nail Development

From Embryology
Revision as of 16:20, 27 September 2011 by S8600021 (talk | contribs)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, June 3) Embryology Integumentary System - Nail Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Integumentary_System_-_Nail_Development

2011

Msx2 and Foxn1 regulate nail homeostasis

Genesis. 2011 Jun;49(6):449-59. doi: 10.1002/dvg.20744. Epub 2011 May 31.

Cai J, Ma L. Source Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Abstract

Epithelial-mesenchymal interactions underlie the foundation for ectodermal appendage formation. Signal molecules such as BMPs and WNTs mediate crosstalk between the two tissue layers and coordinate both the induction and morphogenesis of ectodermal appendages. Here, we analyzed the function of two BMP downstream transcription factors, Msx2 and Foxn1, in nail differentiation. First, we show that Msx2 function is required during onychocyte (nail cell) terminal differentiation. Second, the Msx2/Foxn1/hair keratin pathway controlling hair differentiation is also conserved during onychocyte differentiation. Finally, the Msx2-/-; Foxn1-/- double-mutant nails exhibit a more severe phenotype than either single mutant including nail bed hyperplasia. Together, our data implicate important functions for Msx2 and Foxn1 in regulating differentiation of the keratogenous zone, proliferation of distal nail matrix cells, and organization of the nail bed.

Copyright © 2011 Wiley-Liss, Inc.

PMID 21387539

2010

Incomplete development of the nail of the hallux in the newborn

Dermatol Online J. 2010 Jun 15;16(6):1.

Milano A, Cutrone M, Laforgia N, Bonifazi E.

Unit of Paediatric Dermatology, University of Bari, Bari, Italy. Abstract Between March and October 2008, the nails of 541 (252 females, 289 males) consecutively born neonates with an average age of 3.2 days were examined in the Neonatology Unit. Of these newborns with nail disorders, 36 were re-examined after a period that ranged from seven days to six months. The most frequent nail alteration was the incomplete development of the hallux nail, which was triangular - sometimes trapezoidal - shaped. This alteration, which had been previously reported in the literature as congenital hypertrophy of the lateral folds of the hallux, spontaneously regressed within one to three months in the infants re-examined. There was no associated inflammation or onychocryptosis at any time. The apparent hypertrophy of the nail folds seemed to be secondary to the lack of pressure of the nail lamina.

PMID 20579456

http://dermatology.cdlib.org/1606/1_originals/1_10-00107/bonifazi.html

Dermatology Online Journal was created in an effort to explore the educational potential of distributed hypermedia served via the World Wide Web. The journal is attempting to serve the dual role of providing relevant information and improving the way scholarly content is shared. Dermatology Online Journal © The Regents of the University of California, Davis campus. Individual articles © by their authors. All material is available under the Creative Commons BY-NC-ND license. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License

2008

Lyonization pattern of normal human nails

Genes Cells. 2008 May;13(5):421-8.

Okada M, Nishimukai H, Okiura T, Sugino Y.

Department of Medical Technology, Ehime Prefectural University of Health Sciences, Tako-oda, Tobe, Ehime 791-2101, Japan. mokada@epu.ac.jp

Abstract

To examine the X-inactivation patterns of normal human nails, we performed the human androgen receptor gene assay of DNA samples extracted separately from each finger and toe nail plates of nine female volunteers. The X-inactivation pattern of each nail was unique and constant for at least 2 years. The frequency of nails with one of the two X-chromosomes exclusively inactivated was 25.9%. In the nails composed of two types of cells with either one X-chromosome inactivated, the two cell types were distributed in patchy mosaics. These findings suggest that the composition of precursor cells of each nail is maintained at each site at least through several cycles of regeneration time, and that the nail plate has a longitudinal band pattern, each band consisting of cells with only one of the two X-chromosomes inactivated. Using the frequency of nails with one of two X-chromosomes exclusively inactivated, we estimated the number of progenitor cells that gave rise to the nail plate during development to be about 3, under the assumption that the process follows the binominal distribution model. A strong correlation observed among the big, index and little fingers, and among the corresponding toes suggests an interesting interpretation concerning their morphogenetic process.

PMID: 18429815

2003

Evolution and development of mammalian limb integumentary structures

J Exp Zool B Mol Dev Evol. 2003 Aug 15;298(1):152-63.

Hamrick MW.

Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA. mhamrick@mail.mcg.edu

Abstract The adaptive radiation of mammalian clades has involved marked changes in limb morphology that have affected not only the skeleton but also the integumentary structures. For example, didelphid marsupials show distinct differences in nail and claw morphology that are functionally related to the evolution of arboreal, terrestrial, and aquatic foraging behaviors. Vespertilionoid bats have evolved different volar pad structures such as adhesive discs, scales, and skin folds, whereas didelphid marsupials have apical pads covered either with scales, ridges, or small cones. Comparative analysis of pad and claw development reveals subtle differences in mesenchymal and ectodermal patterning underlying interspecific variation in morphology. Analysis of gene expression during pad and claw development reveals that signaling molecules such as Msx1 and Hoxc13 play important roles in the morphogenesis of these integumentary structures. These findings suggest that evolutionary change in the expression of these molecules, and in the response of mesenchymal and ectodermal cells to these signaling factors, may underlie interspecific differences in nail, claw, and volar pad morphology. Evidence from comparative morphology, development, and functional genomics therefore sheds new light on both the patterns and mechanisms of evolutionary change in mammalian limb integumentary structures.

Copyright 2003 Wiley-Liss, Inc.

PMID: 12949775 http://www.ncbi.nlm.nih.gov/pubmed/12949775

2001

Development and evolution of the mammalian limb: adaptive diversification of nails, hooves, and claws

Evol Dev. 2001 Sep-Oct;3(5):355-63.

Hamrick MW.

Department of Anthropology & School of Biomedical Sciences, Kent State University, OH 44242, USA. mhamrick@kent.edu Abstract Paleontological evidence indicates that the evolutionary diversification of mammals early in the Cenozoic era was characterized by an adaptive radiation of distal limb structures. Likewise, neontological data show that morphological variation in distal limb integumentary appendages (e.g., nails, hooves, and claws) can be observed not only among distantly related mammalian taxa but also among closely related species within the same clade. Comparative analysis of nail, claw, and hoof morphogenesis reveals relatively subtle differences in mesenchymal and epithelial patterning underlying these adult differences in distal limb appendage morphology. Furthermore, studies of regulatory gene expression during vertebrate claw development demonstrate that many of the signaling molecules involved in patterning ectodermal derivatives such as teeth, hair, and feathers are also involved in organizing mammalian distal limb appendages. For example, Bmp4 signaling plays an important role during the recruitment of mesenchymal cells into the condensations forming the terminal phalanges, whereas Msx2 affects the length of nails and claws by suppressing proliferation of germinal epidermal cells. Evolutionary changes in the form of distal integumentary appendages may therefore result from changes in gene expression during formation of mesenchymal condensations (Bmp4, posterior Hox genes), induction of the claw fold and germinal matrix (shh), and/or proliferation of epidermal cells in the claw matrix (Msx1, Msx2). The prevalence of convergences and parallelisms in nail and claw structure among mammals underscores the existence of multiple morphogenetic pathways for evolutionary change in distal limb appendages.

PMID: 11710767 http://www.ncbi.nlm.nih.gov/pubmed/11710767